Sabine Jansen

Mathematical Physics and Statistics

Ludwig-Maximilians-Universität München

Mathematical Institute

Theresienstr. 39

80333 Munich

+49 / 89 2180 4477

jansen[at]math.lmu.de

Research Website

I love problems that combine physical intuition with mathematical precision and elegance and draw on different styles of reasoning. Eureka moments involve beautiful landscapes of structure emerging after long struggles in understanding, but also being able to pin down subtle nuances in models and reasoning, using mathematical language to bring clarity to interdisciplinary dialogue.

Description

My research within MCQST / MQC focuses on the interplay between probabilistic techniques and analytic tools to understand many-body systems.


Examples of fruitful interplay abound:

  • metastability and the rigorous proof of Arrhenius laws build on the semi-classical limit and WKB expansions;
  • spatial correlations are studied by investigating operators (Stein operators, infinitesimal generators) and their spectral gap, compare the exponential clustering theorem for gapped Hamilton operators;
  • unitary equivalence of Hamilton operators, e.g. based on different representations for algebras of creation and annihilation operators, is closely related to the notion of duality of Markov processes, which might prove helpful in investigating path integrals.


I am especially interested in low-temperature equilibrium states and phase transitions.

Publications

Intertwinings for Continuum Particle Systems: an Algebraic Approach

S. Floreani, S. Jansen, S. Wagner

Symmetry Integrability and Geometry-Methods and Applications 20, 46 (2024).

Show Abstract

We develop the algebraic approach to duality, more precisely to intertwinings, within the context of particle systems in general spaces, focusing on the su (1 , 1) current algebra. We introduce raising, lowering, and neutral operators indexed by test functions and we use them to construct unitary operators, which act as self-intertwiners for some Markov processes having the Pascal process's law as a reversible measure. We show that such unitaries relate to generalized Meixner polynomials. Our primary results are continuum counterparts of results in the discrete setting obtained by Carinci, Franceschini, Giardin`a, Groenevelt, and Redig (2019).

DOI: 10.3842/sigma.2024.046

Intertwining and duality for consistent Markov processes

S. Floreani, S. Jansen, F. Redig, S. Wagner

Electronic Journal of Probability 29, 1-34 (2024).

Show Abstract

In this paper we derive intertwining relations for a broad class of conservative particle systems both in discrete and continuous setting. Using the language of point process theory, we are able to derive a new framework in which duality and intertwining can be formulated for particle systems evolving in general spaces. These new intertwining relations are formulated with respect to factorial and orthogonal polynomials. Our novel approach unites all the previously found self-dualities in the context of discrete consistent particle systems and provides new duality results for several interacting systems in the continuum, such as interacting Brownian motions. We also introduce a process that we call generalized inclusion process, consisting of interacting random walks in the continuum, for which our method applies and yields generalized Meixner polynomials as orthogonal self-intertwiners.

DOI: 10.1214/24-ejp1124

Generalized geometric criteria for the absence of effective many-body interactions in the Asakura-Oosawa model

R. Wittmann, S. Jansen, H. Löwen

Journal of Mathematical Physics 64 (10), 103301 (2023).

Show Abstract

We investigate variants of the Asakura-Oosawa (AO) model for colloid-polymer mixtures, represented by hard classical particles interacting via their excluded volume. The interaction between the polymers is neglected but the colloid-polymer and colloid-colloid interactions are present and can be condensed into an effective depletion interaction among the colloids alone. The original AO model involves hard spherical particles in three spatial dimensions with colloidal radii R and the so-called depletion radius delta of the polymers, such that the minimum possible center-to-center distance between polymers and colloids allowed by the excluded-volume constraints is R + delta. It is common knowledge among physicists that there are only pairwise effective depletion interactions between the colloids if the geometric condition delta/R<2/root 3-1 is fulfilled. In this case, triplet and higher-order many body interactions are vanishing and the equilibrium statistics of the binary mixture can exactly be mapped onto that of an effective one-component system with the effective depletion pair-potential. Here we rigorously prove that the criterion delta/R<2/root 3-1 is both sufficient and necessary to guarantee the absence of triplet and higher-order many body interactions among the colloids. For an external hard wall confining the system, we also include a criterion which guarantees that the system can be exactly mapped onto one with effective external one-body interactions. Our general formulation also accounts for polydisperse mixtures and anisotropic shapes of colloids in any spatial dimension. In those cases where the resulting condition is only sufficient, we further demonstrate how to specify improved bounds.

DOI: 10.1063/5.0125536

Accept privacy?

Scroll to top