
Intertwinings for Continuum Particle Systems: an Algebraic Approach
S. Floreani, S. Jansen, S. Wagner
Symmetry Integrability and Geometry-Methods and Applications 20, 46 (2024).
We develop the algebraic approach to duality, more precisely to intertwinings, within the context of particle systems in general spaces, focusing on the su (1 , 1) current algebra. We introduce raising, lowering, and neutral operators indexed by test functions and we use them to construct unitary operators, which act as self-intertwiners for some Markov processes having the Pascal process's law as a reversible measure. We show that such unitaries relate to generalized Meixner polynomials. Our primary results are continuum counterparts of results in the discrete setting obtained by Carinci, Franceschini, Giardin`a, Groenevelt, and Redig (2019).

Intertwining and duality for consistent Markov processes
S. Floreani, S. Jansen, F. Redig, S. Wagner
Electronic Journal of Probability 29, 1-34 (2024).
In this paper we derive intertwining relations for a broad class of conservative particle systems both in discrete and continuous setting. Using the language of point process theory, we are able to derive a new framework in which duality and intertwining can be formulated for particle systems evolving in general spaces. These new intertwining relations are formulated with respect to factorial and orthogonal polynomials. Our novel approach unites all the previously found self-dualities in the context of discrete consistent particle systems and provides new duality results for several interacting systems in the continuum, such as interacting Brownian motions. We also introduce a process that we call generalized inclusion process, consisting of interacting random walks in the continuum, for which our method applies and yields generalized Meixner polynomials as orthogonal self-intertwiners.

Generalized geometric criteria for the absence of effective many-body interactions in the Asakura-Oosawa model
R. Wittmann, S. Jansen, H. Löwen
Journal of Mathematical Physics 64 (10), 103301 (2023).
We investigate variants of the Asakura-Oosawa (AO) model for colloid-polymer mixtures, represented by hard classical particles interacting via their excluded volume. The interaction between the polymers is neglected but the colloid-polymer and colloid-colloid interactions are present and can be condensed into an effective depletion interaction among the colloids alone. The original AO model involves hard spherical particles in three spatial dimensions with colloidal radii R and the so-called depletion radius delta of the polymers, such that the minimum possible center-to-center distance between polymers and colloids allowed by the excluded-volume constraints is R + delta. It is common knowledge among physicists that there are only pairwise effective depletion interactions between the colloids if the geometric condition delta/R<2/root 3-1 is fulfilled. In this case, triplet and higher-order many body interactions are vanishing and the equilibrium statistics of the binary mixture can exactly be mapped onto that of an effective one-component system with the effective depletion pair-potential. Here we rigorously prove that the criterion delta/R<2/root 3-1 is both sufficient and necessary to guarantee the absence of triplet and higher-order many body interactions among the colloids. For an external hard wall confining the system, we also include a criterion which guarantees that the system can be exactly mapped onto one with effective external one-body interactions. Our general formulation also accounts for polydisperse mixtures and anisotropic shapes of colloids in any spatial dimension. In those cases where the resulting condition is only sufficient, we further demonstrate how to specify improved bounds.