Jonathan Finley

Semiconductor Nanostructures and Quantum Systems

Technical University of Munich

Walter Schottky Institute

85745 Garching

Tel. +49 89 289 12770

jonathan.finley[at]wsi.tum.de

Group webpage

Description

Research focus: semiconductor nanostructure, nanotechnology, quantum optics

The chair for Semiconductor Nanostructures and Quantum Systems explores a wide range of topics related to the fundamental physics of nanostructured materials and their quantum-electronic and -photonic properties.

Members of the institute study the unique electronic, photonic and quantum properties of materials patterned over nanometer lengthscales and explore how sub-components can be integrated together to realise entirely new materials with emergent properties.

This convergence of materials-nanotechnology, quantum electronics and photonics is strongly interdisciplinary, spanning topics across the physical sciences, as well as materials science and engineering. Current research focuses on:

  • The development and exploration of quantum semiconductor nanomaterials such as artificial atoms, molecules and nanowires and two-dimensional crystals;
  • Nanophotonics, including photonic crystals and plasmonic materials and their use to enhance interactions between light and matter;
  • The manipulation and exploitation of quantum coherence in integrated nanosystems.

Full details of the research topics being pursued are presented on our research pages. Our research is funded by various sources including the German Science Foundation, the German Federal Ministry for Education and Research , the European Union and the Technical University of Munich via the TUM International Graduate School of Science and Engineering and the TUM Institute of Advanced Study.

Publications

Purcell enhanced coupling of nanowire quantum emitters to silicon photonic waveguides

N. Mukhundhan, A. Ajay, J. Bissinger, J.J. Finley, G. Koblmüller

Optics Express 29 (26), 43068-43081 (2021).

Show Abstract

We design a quantum dot (QD) embedded in a vertical-cavity photonic nanowire (NW), deterministically integrated on a silicon-on-insulator (SOI) waveguide (WG), as a novel quantum light source in a quantum photonic integrated circuit (QPIC). Using a broadband QD emitter, we perform finite-difference time domain simulations to systematically tune key geometrical parameters and to explore the coupling mechanisms of the emission to the NW and WG modes. We find distinct Fabry-Perot resonances in the Purcell enhanced emission that govern the outcoupled power into the fundamental TE mode of the SOI-WG. With an optimized geometry that places the QD emitter in a finite NW in close proximity to the WG, we obtain peak outcoupling efficiencies for polarized emission as high as eighty percent. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

DOI: 10.1364/oe.442527

Efficient optomechanical mode-shape mapping of micromechanical devices

D. Hoch, K.-J. Haas, L. Moller, T. Sommer, P. Soubelet, J. Finley, M. Poot

Micromachines 12, 880 (2021).

Show Abstract

Visualizing eigenmodes is crucial in understanding the behavior of state-of-the-art micromechanical devices. We demonstrate a method to optically map multiple modes of mechanical structures simultaneously. The fast and robust method, based on a modified phase-lock loop, is demonstrated on a silicon nitride membrane and shown to outperform three alternative approaches. Line traces and two-dimensional maps of different modes are acquired. The high quality data enables us to determine the weights of individual contributions in superpositions of degenerate modes.

DOI: 10.3390/mi12080880

The role of chalcogen vacancies for atomic defect emission in MoS2

E. Mitterreiter, B. Schuler, A. Micevic, D. Hernangómez-Pérez, K. Barthelmi, K.A. Cochrane, J. Kiemle, F. Sigger, J. Klein, E. Wong, E.S. Barnard, K. Watanabe, T. Taniguchi, M. Lorke, F. Jahnke, J.J. Finley, A.M. Schwartzberg, D.Y. Qiu, S. Refaely-Abramson, A.W. Holleitner, A. Weber-Bargioni, C. Kastl

Nature Communications 12, 3822 (2021).

Show Abstract

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS2. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure. The defect generation rate, atomic imaging and the optical signatures support this claim. We discriminate the narrow linewidth photoluminescence signatures of vacancies, resulting predominantly from localized defect orbitals, from broad luminescence features in the same spectral range, resulting from adsorbates. Vacancies can be patterned with a precision below 10nm by ion beams, show single photon emission, and open the possibility for advanced defect engineering of 2D semiconductors at the ultimate scale. The relation between the microscopic structure and the optical properties of atomic defects in 2D semiconductors is still debated. Here, the authors correlate different fabrication processes, optical spectroscopy and electron microscopy to identify the optical signatures of chalcogen vacancies in monolayer MoS2.

DOI: 10.1038/s41467-021-24102-y

Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites

T. Neumann, S. Feldmann, P. Moser, A. Delhomme, J. Zerhoch, T. van de Goor, S. Wang, M. Dyksik, T. Winkler, J.J. Finley, P. Plochocka, M.S. Brandt, C. Faugeras, A.V. Stier, F. Deschler

Nature Communications 12, 3489 (2021).

Show Abstract

Materials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)2PbI4 (PEA = phenethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn2+ ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field. Unexpectedly, the circular polarization of the dark exciton luminescence follows the Brillouin-shaped magnetization with a saturation polarization of 13% at 4 K and 6 T. From high-field transient magneto-luminescence we attribute our observations to spin-dependent exciton dynamics at early times after excitation, with first indications for a Mn-mediated spin-flip process. Our findings demonstrate manganese doping as a powerful approach to control excitonic spin physics in Ruddlesden-Popper perovskites, which will stimulate research on this highly tuneable material platform with promise for tailored interactions between magnetic moments and excitonic states.

DOI: 10.1038/s41467-021-23602-1

Controlling exciton many-body states by the electric-field effect in monolayer MoS2

J. Klein, A. Hötger, M. Florian, A. Steinhoff, A. Delhomme, T. Taniguchi, K. Watanabe, F. Jahnke, A.W. Holleitner, M. Potemski, C. Faugeras, J.J. Finley, A.V. Stier

Physical Review Research 3, L022009 (2021).

Show Abstract

We report magneto-optical spectroscopy of gated monolayer MoS2 in high magnetic fields up to 28T and obtain new insights on the many-body interaction of neutral and charged excitons with the resident charges of distinct spin and valley texture. For neutral excitons at low electron doping, we observe a nonlinear valley Zeeman shift due to dipolar spin-interactions that depends sensitively on the local carrier concentration. As the Fermi energy increases to dominate over the other relevant energy scales in the system, the magneto-optical response depends on the occupation of the fully spin-polarized Landau levels (LL) in both K/K′ valleys. This manifests itself in a many-body state. Our experiments demonstrate that the exciton in monolayer semiconductors is only a single particle boson close to charge neutrality. We find that away from charge neutrality it smoothly transitions into polaronic states with a distinct spin-valley flavor that is defined by the LL quantized spin and valley texture.

DOI: 10.1103/PhysRevResearch.3.L022009

Optomechanical wave mixing by a single quantum dot

M. Weiß, D. Wigger, M. Nägele, K. Müller, J.J. Finley, T. Kuhn, P. Machnikowski, H.J. Krenner

Optica 8 (3), 291-300 (2021).

Show Abstract

Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bidirectional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely this fundamental principle. Surface acoustic waves (SAWs) provide a versatile interconnect on a chip and thus enable the optomechanical control of remote systems. Here we report on the coherent nonlinear three-wave mixing between the coherent fields of two radio frequency SAWs and optical laser photons via the dipole transition of a single quantum dot exciton. In the resolved sideband regime, we demonstrate fundamental acoustic analogues of sum and difference frequency generation between the two SAWs and employ phase matching to deterministically enhance or suppress individual sidebands. This transfer between the acoustic and optical domains is described by theory that fully takes into account direct and virtual multiphonon processes. Finally, we show that the precision of the wave mixing is limited by the frequency accuracy of modern radio frequency electronics.

DOI: 10.1364/OPTICA.412201

3D Deep Learning Enables Accurate Layer Mapping of 2D Materials

X.C. Dong, H.W. Li, Z.T. Jiang, T. Grunleitner, I. Gueler, J. Dong, K. Wang, M.H. Koehler, M. Jakobi, B.H. Menze, A.K. Yetisen, I.D. Sharp, A.V. Stier, J.J. Finley, A.W. Koch

ACS Nano 15 (2), 3139-3151 (2021).

Show Abstract

Layered, two-dimensional (2D) materials are promising for next-generation photonics devices. Typically, the thickness of mechanically cleaved flakes and chemical vapor deposited thin films is distributed randomly over a large area, where accurate identification of atomic layer numbers is time-consuming. Hyperspectral imaging microscopy yields spectral information that can be used to distinguish the spectral differences of varying thickness specimens. However, its spatial resolution is relatively low due to the spectral imaging nature. In this work, we present a 3D deep learning solution called DALM (deep-learning-enabled atomic layer mapping) to merge hyperspectral reflection images (high spectral resolution) and RGB images (high spatial resolution) for the identification and segmentation of MoS2 flakes with mono-, bi-, tri-, and multilayer thicknesses. DALM is trained on a small set of labeled images, automatically predicts layer distributions and segments individual layers with high accuracy, and shows robustness to illumination and contrast variations. Further, we show its advantageous performance over the state-of-the-art model that is solely based on RGB microscope images. This AI-supported technique with high speed, spatial resolution, and accuracy allows for reliable computer-aided identification of atomically thin materials.

DOI: 10.1021/acsnano.0c09685

Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS2

J. Klein, L. Sigl, S. Gyger, K. Barthelmi, M. Florian, S. Rey T. Taniguchi K. Watanabe, F. Jahnke, C. Kastl, V. Zwiller, K.D. Jons, K. Mueller, U. Wurstbauer, J.J. Finley, A.W. Holleitner

ACS Photonics 8 (2), 669-677 (2021).

Show Abstract

We demonstrate the on-demand creation and positioning of photon emitters in atomically thin MoS2 with very narrow ensemble broadening and negligible background luminescence. Focused helium-ion beam irradiation creates 100s to 1000s of such mono-typical emitters at specific positions in the MoS2 monolayers. Individually measured photon emitters show anti-bunching behavior with a g(2)(0) similar to 0.23 and 0.27. From a statistical analysis, we extract the creation yield of the He-ion induced photon emitters in MoS2 as a function of the exposed area, as well as the total yield of single emitters as a function of the number of He ions when single spots are irradiated by He ions. We reach probabilities as high as 18% for the generation of individual and spectrally clean photon emitters per irradiated single site. Our results firmly establish 2D materials as a platform for photon emitters with unprecedented control of position as well as photophysical properties owing to the all-interfacial nature.

DOI: 10.1021/acsphotonics.0c01907

Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS2 van der Waals Heterodevices

A. Hoetger, J. Klein, K. Barthelmi, L. Sigl, F. Sigger, W. Manner, S. Gyger, M. Florian, M. Lorke, F. Jahnke, T. Taniguchi, K. Watanabe, K.D. Jons, U. Wurstbauer, C. Kastl, K. Mueller, J.J. Finley, A.W. Holleitner

Nano Letters 21 (2), 1040-1046 (2021).

Show Abstract

We demonstrate electrostatic switching of individual, site-selectively generated matrices of single photon emitters (SPEs) in MoS2 van der Waals heterodevices. We contact monolayers of MoS2 in field-effect devices with graphene gates and hexagonal boron nitride as the dielectric and graphite as bottom gates. After the assembly of such gate-tunable heterodevices, we demonstrate how arrays of defects, that serve as quantum emitters, can be site-selectively generated in the monolayer MoS2 by focused helium ion irradiation. The SPEs are sensitive to the charge carrier concentration in the MoS2 and switch on and off similar to the neutral exciton in MoS2 for moderate electron doping. The demonstrated scheme is a first step for producing scalable, gate-addressable, and gate-switchable arrays of quantum light emitters in MoS2 heterostacks.

DOI: 10.1021/acs.nanolett.0c04222

Charged Exciton Kinetics in Monolayer MoSe2 near Ferroelectric Domain Walls in Periodically Poled LiNbO3

P. Soubelet, J. Klein, J. Wierzbowski, R. Silvioli, F. Sigger, A.V. Stier, K. Gallo, J.J. Finley

Nano Letter 21 (2), 959-966 (2021).

Show Abstract

Monolayer semiconducting transition metal dichal-cogenides are a strongly emergent platform for exploring quantum phenomena in condensed matter, building novel optoelectronic devices with enhanced functionalities. Because of their atomic thickness, their excitonic optical response is highly sensitive to their dielectric environment. In this work, we explore the optical properties of monolayer thick MoSe2 straddling domain wall boundaries in periodically poled LiNbO3. Spatially resolved photoluminescence experiments reveal spatial sorting of charge and photogenerated neutral and charged excitons across the boundary. Our results reveal evidence for extremely large in-plane electric fields of similar or equal to 4000 kV/cm at the domain wall whose effect is manifested in exciton dissociation and routing of free charges and trions toward oppositely poled domains and a nonintuitive spatial intensity dependence. By modeling our result using drift-diffusion and continuity equations, we obtain excellent qualitative agreement with our observations and have explained the observed spatial luminescence modulation using realistic material parameters.

DOI: 10.1021/acs.nanolett.0c03810

Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe

M.M. Petric, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y.X. Shen, S. Tongay, J.J. Finley, A.R. Botello-Mendez, K. Mueller

Physical Review B 103 (3), 035414 (2021).

Show Abstract

Janus transition metal dichalcogenides (TMDs) lose the horizontal mirror symmetry of ordinary TMDs, leading to the emergence of additional features, such as native piezoelectricity, Rashba effect, and enhanced catalytic activity. While Raman spectroscopy is an essential nondestructive, phase- and composition-sensitive tool to monitor the synthesis of materials, a comprehensive study of the Raman spectrum of Janus monolayers is still missing. Here, we discuss the Raman spectra of WSSe and MoSSe measured at room and cryogenic temperatures, near and off resonance. By combining polarization-resolved Raman data with calculations of the phonon dispersion and using symmetry considerations, we identify the four first-order Raman modes and higher-order two-phonon modes. Moreover, we observe defect-activated phonon processes, which provide a route toward a quantitative assessment of the defect concentration and, thus, the crystal quality of the materials. Our work establishes a solid background for future research on material synthesis, study, and application of Janus TMD monolayers.

DOI: 10.1103/PhysRevB.103.035414

High-resolution spectroscopy of a quantum dot driven bichromatically by two strong coherent fields

C. Gustin, L. Hanschke, K. Boos, J.R.A. Müller, M. Kremser, J. J. Finley, S. Hughes, K. Müller

Physical Review Research 3, 13044 (2021).

Show Abstract

We present spectroscopic experiments and theory of a quantum dot driven bichromatically by two strong coherent lasers. In particular, we explore the regime where the drive strengths are substantial enough to merit a general nonperturbative analysis, resulting in a rich higher-order Floquet dressed-state energy structure. We show high-resolution spectroscopy measurements with a variety of laser detunings performed on a single InGaAs quantum dot, with the resulting features well explained with a time-dependent quantum master equation and Floquet analysis. Notably, driving the quantum dot resonance and one of the subsequent Mollow triplet sidepeaks, we observe the disappearance and subsequent reappearance of the central transition and transition resonant with detuned laser at high detuned-laser pump strengths and additional higher-order effects, e.g., emission triplets at higher harmonics and signatures of higher-order Floquet states. For a similar excitation condition but with an off-resonant primary laser, we observe similar spectral features but with an enhanced inherent spectral asymmetry.

DOI: 10.1103/PhysRevResearch.3.013044

Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack

L. Sigl, F. Sigger, F. Kronowetter, J. Kiemle, J. Klein, K. Watanabe, T. Taniguchi, J.J. Finley, U. Wurstbauer, A.W. Holleitner

Physical Review Research 2, 042044(R) (2020).

Show Abstract

Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic many-body states in such two-dimensional materials. Pure optical studies, the most obvious way to access the phase diagram of photogenerated excitons, have been elusive. We observe several criticalities in photogenerated exciton ensembles hosted in MoSe2-WSe2 heterostacks with respect to photoluminescence intensity, linewidth, and temporal coherence pointing towards the transition to a coherent many-body quantum state, consistent with the predicted critical degeneracy temperature. For this state, the estimated occupation is approximately 100% and the phenomena survive above 10 K.Y

DOI: 10.1103/PhysRevResearch.2.042044

Room-Temperature Synthesis of 2D Janus Crystals and their Heterostructures

D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra, M. Howell, L. Liu, S.J. Yang, N.H. Patoary, H. Li, M.M. Petric, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A.V. Stier, K. Mueller, S.Z. Yang, I.S. Esqueda, H.L. Zhuang, J.J. Finley, S. Tongay

Advanced Materials 32 (50), 2006320 (2020).

Show Abstract

Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin-orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2 and via plasma stripping followed thermal annealing of MoS2. However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room-temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low-energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room-temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.

DOI: 10.1002/adma.202006320

Ultrathin catalyst-free InAs nanowires on silicon with distinct 1D sub-band transport properties

F. del Giudice, J. Becker, C. de Rose, M. Doeblinger, D. Ruhstorfer, L. Suomenniemi, J. Treu, H. Riedl, J.J. Finley, G. Koblmueller

Nanoscale 12 (42), 21857-21868 (2020).

Show Abstract

Ultrathin InAs nanowires (NW) with a one-dimensional (1D) sub-band structure are promising materials for advanced quantum-electronic devices, where dimensions in the sub-30 nm diameter limit together with post-CMOS integration scenarios on Si are much desired. Here, we demonstrate two site-selective synthesis methods that achieve epitaxial, high aspect ratio InAs NWs on Si with ultrathin diameters below 20 nm. The first approach exploits direct vapor-solid growth to tune the NW diameter by interwire spacing, mask opening size and growth time. The second scheme explores a unique reverse-reaction growth by which the sidewalls of InAs NWs are thermally decomposed under controlled arsenic flux and annealing time. Interesting kinetically limited dependencies between interwire spacing and thinning dynamics are found, yielding diameters as low as 12 nm for sparse NW arrays. We clearly verify the 1D sub-band structure in ultrathin NWs by pronounced conductance steps in low-temperature transport measurements using back-gated NW-field effect transistors. Correlated simulations reveal single- and double degenerate conductance steps, which highlight the rotational hexagonal symmetry and reproduce the experimental traces in the diffusive 1D transport limit. Modelling under the realistic back-gate configuration further evidences regimes that lead to asymmetric carrier distribution and breakdown of the degeneracy depending on the gate bias.

DOI: 10.1039/d0nr05666a

Origin of Antibunching in Resonance Fluorescence

L. Hanschke, L. Schweickert, J.C.L. Carreno, E. Scholl, K.D. Zeuner, T. Lettner, E.Z. Casalengua, M. Reindl, S.F.C. da Silva, R. Trotta, J.J. Finley, A. Rastelli, E. del Valle, F.P. Laussy, V. Zwiller, K. Muller, K.D. Jons

Physical Review Letters 125 (17), 170402 (2020).

Show Abstract

Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emission.

DOI: 10.1103/PhysRevLett.125.170402

Atomistic defects as single-photon emitters in atomically thin MoS2

K. Barthelmi, J. Klein, A. Hoetger, L. Sigl, F. Sigger, E. Mitterreiter, S. Rey, S. Gyger, M. Lorke, M. Florian, F. Jahnke, T: Taniguchi, K. Watanabe, V. Zwiller, K.D. Jons, U. Wurstbauer, C. Kastl, A. Weber-Bargioni, J.J. Finley, K. Mueller, A.W. Holleitner

Applied Physics Letters 117 (7), 070501 (2020).

Show Abstract

Precisely positioned and scalable single-photon emitters (SPEs) are highly desirable for applications in quantum technology. This Perspective discusses single-photon-emitting atomistic defects in monolayers of MoS2 that can be generated by focused He-ion irradiation with few nanometers positioning accuracy. We present the optical properties of the emitters and the possibilities to implement them into photonic and optoelectronic devices. We showcase the advantages of the presented emitters with respect to atomistic positioning, scalability, long (microsecond) lifetime, and a homogeneous emission energy within ensembles of the emitters. Moreover, we demonstrate that the emitters are stable in energy on a timescale exceeding several weeks and that temperature cycling narrows the ensembles' emission energy distribution.

DOI: 10.1063/5.0018557

Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface

M. Kremser, M. Brotons-Gisbert, J. Knoerzer, J. Gueckelhorn, M. Meyer, M. Barbone, A.V. Stier, B.D. Gerardot, K. Mueller, J.J. Finley

NPJ 2D Materials and Applications 4 (1), 8 (2020).

Show Abstract

Inter-layer excitons (IXs) in hetero-bilayers of transition metal dichalcogenides (TMDs) represent an exciting emergent class of long-lived dipolar composite bosons in an atomically thin, near-ideal two-dimensional (2D) system. The long-range interactions that arise from the spatial separation of electrons and holes can give rise to novel quantum, as well as classical multi-particle correlation effects. Indeed, first indications of exciton condensation have been reported recently. In order to acquire a detailed understanding of the possible many-body effects, the fundamental interactions between individual IXs have to be studied. Here, we trap a tunable number of dipolar IXs (N-IX 1-5) within a nanoscale confinement potential induced by placing a MoSe2-WSe2 hetero-bilayer (HBL) onto an array of SiO2 nanopillars. We control the mean occupation of the IX trap via the optical excitation level and observe discrete sharp-line emission from different configurations of interacting IXs. The intensities of these features exhibit characteristic near linear, quadratic, cubic, quartic and quintic power dependencies, which allows us to identify them as different multiparticle configurations with N-IX 1-5. We directly measure the hierarchy of dipolar and exchange interactions as N-IX increases. The interlayer biexciton (N-IX = 2) is found to be an emission doublet that is blue-shifted from the single exciton by Delta E = (8.4 +/- 0.6) meV and split by 2J = (1.2 +/- 0.5) meV. The blueshift is even more pronounced for triexcitons ((12.4 +/- 0.4) meV), quadexcitons ((15.5 +/- 0.6) meV) and quintexcitons ((18.2 +/- 0.8) meV). These values are shown to be mutually consistent with numerical modelling of dipolar excitons confined to a harmonic trapping potential having a confinement lengthscale in the range l approximate to 3 nm. Our results contribute to the understanding of interactions between IXs in TMD hetero-bilayers at the discrete limit of only a few excitations and represent a key step towards exploring quantum correlations between IXs in TMD hetero-bilayers.

DOI: 10.1038/s41699-020-0141-3

Impact of substrate induced band tail states on the electronic and optical properties of MoS2

J. Klein, A. Kerelsky, M. Lorke, M. Florian, F. Sigger, J. Kiemle, M. C. Reuter, T. Taniguchi, K. Watanabe, J. Finley, A. N. Pasupathy, A. Holleitner, F. M. Ross, U. Wurstbauer

Applied Physics Letters 115 (26), 261603 (2019).

Show Abstract

Substrate, environment, and lattice imperfections have a strong impact on the local electronic structure and the optical properties of atomically thin transition metal dichalcogenides. We find by a comparative study of MoS2 on SiO2 and hexagonal boron nitride (hBN) using scanning tunneling spectroscopy (STS) measurements that the apparent bandgap of MoS2 on SiO2 is significantly reduced compared to MoS2 on hBN. The bandgap energies as well as the exciton binding energies determined from all-optical measurements are very similar for MoS2 on SiO2 and hBN. This discrepancy is found to be caused by a substantial amount of band tail states near the conduction band edge of MoS2 supported by SiO2. The presence of those states impacts the local density of states in STS measurements and can be linked to a broad red-shifted photoluminescence peak and a higher charge carrier density that are all strongly diminished or even absent using high quality hBN substrates. By taking into account the substrate effects, we obtain a quasiparticle gap that is in excellent agreement with optical absorbance spectra and we deduce an exciton binding energy of about 0.53 eV on SiO2 and 0.44 eV on hBN.

DOI: 10.1063/1.5131270

Quantum-confinement enhanced thermoelectric properties in modulation-doped GaAs-AlGaAs core-shell nanowires

S. Fust, A. Faustmann, D. J. Carrad, J. Bissinger, B. Loitsch, M. Döblinger, J. Becker, G. Abstreiter, J. J. Finley, G. Koblmueller

Advanced Materials 32, 1905458 (2019).

Show Abstract

Nanowires (NWs) hold great potential in advanced thermoelectrics due to their reduced dimensions and low-dimensional electronic character. However, unfavorable links between electrical and thermal conductivity in state-of-the-art unpassivated NWs have, so far, prevented the full exploitation of their distinct advantages. A promising model system for a surface-passivated one-dimensional (1D)-quantum confined NW thermoelectric is developed that enables simultaneously the observation of enhanced thermopower via quantum oscillations in the thermoelectric transport and a strong reduction in thermal conductivity induced by the core–shell heterostructure. High-mobility modulation-doped GaAs/AlGaAs core–shell NWs with thin (sub-40 nm) GaAs NW core channel are employed, where the electrical and thermoelectric transport is characterized on the same exact 1D-channel. 1D-sub-band transport at low temperature is verified by a discrete stepwise increase in the conductance, which coincided with strong oscillations in the corresponding Seebeck voltage that decay with increasing sub-band number. Peak Seebeck coefficients as high as ≈65–85 µV K−1 are observed for the lowest sub-bands, resulting in equivalent thermopower of S2σ ≈ 60 µW m−1 K−2 and S2G ≈ 0.06 pW K−2 within a single sub-band. Remarkably, these core–shell NW heterostructures also exhibit thermal conductivities as low as ≈3 W m−1 K−1, about one order of magnitude lower than state-of-the-art unpassivated GaAs NWs.

DOI:10.1002/adma.201905458

Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation

J. Klein, M. Lorke, M. Florian, F. Sigger, J. Wierzbowski, J. Cerne, K. Müller, T. Taniguchi, K. Watanabe, U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, J. Finley, A. Holleitner.

Nature Communications 10, Article number: 2755 (2019).

Show Abstract

Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum photonic technologies. The ability to tailor quantum emitters via site-selective defect engineering is essential for realizing scalable architectures. However, a major difficulty is that defects need to be controllably positioned within the material. Here, we overcome this challenge by controllably irradiating monolayer MoS2 using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion exposed MoS2 flake with high-quality hBN reveals spectrally narrow emission lines that produce photons in the visible spectral range. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron–hole complexes at defect states generated by the local helium ion exposure. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and interacting exciton lattices that may allow the exploration of Hubbard physics.

DOI: 0.1038/s41467-019-10632-z

Breakdown of corner states and carrier localization by monolayer fluctuations in a radial nanowire quantum wells

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmueller, H. J. Krenner

Nano Lett. 19 (5), 3336-3343 (2019).

Show Abstract

We report a comprehensive study of the impact of the structural properties in radial GaAs-Al0.3Ga0.7As nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantum well thickness at different facets. Typical thickness fluctuations of the radial quantum well observed by transmission electron microscopy lead to pronounced localization. Our optical data exhibit clear spectral shifts and a multipeak structure of the emission for such asymmetric ring structures resulting from spatially separated, yet interconnected quantum well systems. Charge carrier dynamics induced by a surface acoustic wave are resolved and prove efficient carrier exchange on native, subnanosecond time scales within the heterostructure. Experimental findings are corroborated by theoretical modeling, which unambiguously show that electrons and holes localize on facets where the quantum well is the thickest and that even minute deviations of the perfect hexagonal shape strongly perturb the commonly assumed 6-fold symmetric ground state.

DOI:10.1021/acs.nanolett.9b01028

Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability

E. Scholl, L. Hanschke, L. Schweickert, K.D. Zeuner, M. Reindl, S.F.C. da Silva, T. Lettner, R. Trotta, J.J. Finley, K. Müller, A. Rastelli, V. Zwiller, K.D. Jons

Nano Letters 19 (4), 2404-2410 (2019).

Show Abstract

Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on demand. One promising candidate is strain free GaAs/A1GaAs quantum dots obtained by aluminum droplet etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons and trions confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of V-raw = (95.0(-6.1)(+5.0))%, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g., as quantum light sources for quantum repeater architectures.

DOI: 10.1021/acs.nanolett.8b05132

Accept privacy?

Scroll to top