Profile photo of Christoph Kastl

Topological Electronics and Materials

Technical University of Munich

Walter Schottky Institute

Am Coulombwall 4a

85748 Garching

Tel. 089 289 11455

christoph.kastl@wsi.tum.de

Research Website

Description

Research focus: Topological Materials, Nanostructured Quantum Matter, Quantum Optoelectronics

Topological phases of matter are of interest for quantum electronic circuits, because they are predicted to form a potential realization of fault-tolerant quantum computing schemes.

Our group is interested in two-dimensional van der Waals materials and their heterostructures as model systems to create topological properties by design. To this end, we make use of strong magnetic and spin-orbit proximity effects in atomically thin heterostructures to engineer band structures with novel properties.

We further apply top-down nanofabrication to imprint superlattices structures into topological materials, which are predicted to host emergent, artificial condensed matter phases with enhanced electronic correlations already at moderate temperatures. Our group utilizes light-matter coupling in such solid-state superlattices to interrogate the fundamental symmetries and non-equilibrium dynamics of the topological, correlated states by optoelectronic experiments.

Publications

Probing the Spatial Homogeneity of Exfoliated HfTe5 Films

M. P. Singh, Q. X. Dong, G. F. Chen, A. W. Holleitner, C. Kastl

Acs Nano 18 (28), 18327-18333 (2024).

Show Abstract

In van der Waals materials, external strain is an effective tool to manipulate and control electronic responses by changing the electronic bands upon lattice deformation. In particular, the band gap of the layered transition metal pentatelluride HfTe5 is sufficiently small to be inverted by subtle changes of the lattice parameters resulting in a strain-tunable topological phase transition. In that case, knowledge about the spatial homogeneity of electronic properties becomes crucial, especially for the microfabricated thin film circuits used in typical transport measurements. Here, we reveal the homogeneity of exfoliated HfTe5 thin films by spatially resolved Raman microscopy. Comparing the Raman spectra under applied external strain to unstrained bulk references, we pinpoint local variations of Raman signatures to inhomogeneous strain profiles in the sample. Importantly, our results demonstrate that microfabricated contacts can act as sources of significant inhomogeneities. To mitigate the impact of unintentional strain and its corresponding modifications of the electronic structure, careful Raman microscopy constitutes a valuable tool for quantifying the homogeneity of HfTe5 films and circuits fabricated thereof.

DOI: 10.1021/acsnano.4c02081

Photovoltage and Photocurrent Absorption Spectra of Sulfur Vacancies Locally Patterned in Monolayer MoS2

A. Hötger, W. Männer, T. Amit, D. Hernangómez-Pérez, T. Taniguchi, K. Watanabe, U. Wurstbauer, J. J. Finley, S. Refaely-Abramson, C. Kastl, A. W. Holleitner

Nano Letters 23 (24), 11655-11661 (2023).

Show Abstract

We report on the optical absorption characteristics of selectively positioned sulfur vacancies in monolayer MoS2, as observed by photovoltage and photocurrent experiments in an atomistic vertical tunneling circuit at cryogenic and room temperature. Charge carriers are resonantly photoexcited within the defect states before they tunnel through an hBN tunneling barrier to a graphene-based drain contact. Both photovoltage and photocurrent characteristics confirm the optical absorption spectrum as derived from ab initio GW and Bethe-Salpeter equation approximations. Our results reveal the potential of single-vacancy tunneling devices as atomic-scale photodiodes.

DOI: 10.1021/acs.nanolett.3c03517

Combining experiments on luminescent centres in hexagonal boron nitride with the polaron model and ab initio methods towards the identification of their microscopic origin

M. Fischer, A. Sajid, J. Iles-Smith, A. Hötger, D. I. Miakota, M. K. Svendsen, C. Kastl, S. Canulescu, S. S. Xiao, M. Wubs, K. S. Thygesen, A. W. Holleitner, N. Stenger

Nanoscale 15 (34), 14215-14226 (2023).

Show Abstract

The two-dimensional material hexagonal boron nitride (hBN) hosts luminescent centres with emission energies of ~2 eV which exhibit pronounced phonon sidebands. We investigate the microscopic origin of these luminescent centres by combining ab initio calculations with non-perturbative open quantum system theory to study the emission and absorption properties of 26 defect transitions. Comparing the calculated line shapes with experiments we narrow down the microscopic origin to three carbon-based defects: C2CB, C2CN, and VNCB. The theoretical method developed enables us to calculate so-called photoluminescence excitation (PLE) maps, which show excellent agreement with our experiments. The latter resolves higher-order phonon transitions, thereby confirming both the vibronic structure of the optical transition and the phonon-assisted excitation mechanism with a phonon energy ~170 meV. We believe that the presented experiments and polaron-based method accurately describe luminescent centres in hBN and will help to identify their microscopic origin.

DOI: 10.1039/d3nr01511d

Spin-defect characteristics of single sulfur vacancies in monolayer MoS2

A. Hötger, T. Amit, J. Klein, K. Barthelmi, T. Pelini, A. Delhomme, S. Rey, M. Potemski, C. Faugeras, G. Cohen, D. Hernangómez-Pérez, T. Taniguchi, K. Watanabe, C. Kastl, J. J. Finley, S. Refaely-Abramson, A. W. Holleitner, A. V. Stier

Npj 2d Materials and Applications 7 (1), 30 (2023).

Show Abstract

Single spin-defects in 2D transition-metal dichalcogenides are natural spin-photon interfaces for quantum applications. Here we report high-field magneto-photoluminescence spectroscopy from three emission lines (Q1, Q2, and Q*) of He-ion induced sulfur vacancies in monolayer MoS2. Analysis of the asymmetric PL lineshapes in combination with the diamagnetic shift of Q1 and Q2 yields a consistent picture of localized emitters with a wave function extent of similar to 3.5 nm. The distinct valley-Zeeman splitting in out-of-plane B-fields and the brightening of dark states through in-plane B-fields necessitates spin-valley selectivity of the defect states and lifted spin-degeneracy at zero field. Comparing our results to ab initio calculations identifies the nature of Q1 and Q2 and suggests that Q* is the emission from a chemically functionalized defect. Analysis of the optical degree of circular polarization reveals that the Fermi level is a parameter that enables the tunability of the emitter. These results show that defects in 2D semiconductors may be utilized for quantum technologies.

DOI: 10.1038/s41699-023-00392-2

On-demand generation of optically active defects in monolayer WS2 by a focused helium ion beam

A. Micevic, N. Pettinger, A. Hotger, L. Sigl, M. Florian, T. Taniguchi, K. Watanabe, K. Müller, J. J. Finley, C. Kastl, A. W. Holleitner

Applied Physics Letters 121 (18), 183101 (2022).

Show Abstract

We demonstrate that optically active emitters can be locally generated by focusing a He-ion beam onto monolayer WS2 encapsulated in hBN. The emitters show a low-temperature photoluminescence spectrum, which is well described by an independent Boson model for localized emitters. Consistently, the photoluminescence intensity of the emitters saturates at low excitation intensities, which is distinct to the photoluminescence of excitonic transitions in the investigated WS2 monolayers. The demonstrated method allows us to position defect emitters in WS2 monolayers on demand. A statistical analysis suggests the generation yield of individual emitters to be as high as 11% at the highest investigated He-ion doses.

DOI: 10.1063/5.0118697

Ultra-Sensitive Extinction Measurements of Optically Active Defects in Monolayer MoS2

F. Sigger, I. Amersdorffer, A. Hotger, M. Nutz, J. Kiemle, T. Taniguchi, K. Watanabe, M. Forg, J. Noe, J. J. Finley, A. Högele, A. W. Holleitner, T. Hummer, D. Hunger, C. Kastl

Journal of Physical Chemistry Letters 10291-10296 (2022).

Show Abstract

We utilize cavity-enhanced extinction spectroscopy to directly quantify the optical absorption of defects in MoS2 generated by helium ion bombardment. We achieve hyperspectral imaging of specific defect patterns with a detection limit below 0.01% extinction, corresponding to a detectable defect density below 1 x 10(11) cm(-2). The corresponding spectra reveal a broad subgap absorption, being consistent with theoretical predictions related to sulfur vacancy-bound excitons in MoS2. Our results highlight cavity-enhanced extinction spectroscopy as efficient means for the detection of optical transitions in nanoscale thin films with weak absorption, applicable to a broad range of materials.

DOI: 10.1021/acs.jpclett.2c02386

Defect-Engineered Magnetic Field Dependent Optoelectronics of Vanadium Doped Tungsten Diselenide Monolayers

K. Nisi, J. Kiemle, L. Powalla, A. Scavuzzo, T. D. Nguyen, T. Taniguchi, K. Watanabe, D. L. Duong, M. Burghard, A. W. Holleitner, C. Kastl

Advanced Optical Materials 10 (17), 2102711 (2022).

Show Abstract

The ability to dope transition metal dichalcogenides such as tungsten diselenide (WSe2) with magnetic transition metal atoms in a controlled manner has motivated intense research with the aim of generating dilute magnetic semiconductors. In this work, semiconducting WSe2 monolayers, substitutionally doped with vanadium atoms, are investigated using low-temperature luminescence and optoelectronic spectroscopy. V-dopants lead to a p-type doping character and an impurity-related emission approximate to 160 meV below the neutral exciton, both of which scale with the nominal percentage of V-dopants. Measurements using field-effect devices of 0.3% V-doped WSe2 demonstrate bipolar carrier tunability. The doped monolayers display a clear magnetic hysteresis in transport measurements both under illumination and without illumination, whereas the valley polarization of the excitons reveals a nonlinear g-factor without a magnetic hysteresis within the experimental uncertainty. Hence, this work on V-doped WSe2 provides crucial insights concerning suitable characterization methods on magnetic properties of doped 2D materials.

DOI: 10.1002/adom.202102711

Gate-Tunable Helical Currents in Commensurate Topological Insulator/Graphene Heterostructures

J. Kiemle, L. Powalla, K. Polyudov, L. Gulati, M. Singh, A. W. Holleitner, M. Burghard, C. Kastl

Acs Nano 16 (8), 12338-12344 (2022).

Show Abstract

van der Waals heterostructures made from graphene and three-dimensional topological insulators promise very high electron mobilities, a nontrivial spin texture, and a gate-tunability of electronic properties. Such a combination of advantageous electronic characteristics can only be achieved through proximity effects in heterostructures, as graphene lacks a large enough spin-orbit interaction. In turn, the heterostructures are promising candidates for all-electrical control of proximity -induced spin phenomena. Here, we explore epitaxially grown interfaces between graphene and the lattice-matched topological insulator Bi2Te2Se. For this heterostructure, spin-orbit coupling proximity has been predicted to impart an anisotropic and electronically tunable spin texture. Polarization-resolved second -harmonic generation, Raman spectroscopy, and time-resolved magneto-optic Kerr microscopy are combined to demonstrate that the atomic interfaces align in a commensurate symmetry with characteristic interlayer vibrations. By polarization-resolved photocurrent measurements, we find a circular photogalvanic effect which is drastically enhanced at the Dirac point of the proximitized graphene. We attribute the peculiar gate-tunability to the proximity-induced interfacial spin structure, which could be exploited for, e.g., spin filters.

DOI: 10.1021/acsnano.2c03370

Thickness and defect dependent electronic, optical and thermoelectric features of WTe2

I. Ozdemir, A. W. Holleitner, C. Kastl, O. U. Akturk

Scientific Reports 12 (1), 12756 (2022).

Show Abstract

Transition metal dichalcogenides (TMDs) receive significant attention due to their outstanding electronic and optical properties. In this study, we investigate the electronic, optical, and thermoelectric properties of single and few layer WTe2 in detail utilizing first-principles methods based on the density functional theory (DFT). Within the scope of both PBE and HSE06 including spin orbit coupling (SOC), the simulations predict the electronic band gap values to decrease as the number of layers increases. Moreover, spin-polarized DFT calculations combined with the semi-classical Boltzmann transport theory are applied to estimate the anisotropic thermoelectric power factor (Seebeck coefficient, S) for WTe2 in both the monolayer and multilayer limit, and S is obtained below the optimal value for practical applications. The optical absorbance of WTe2 monolayer is obtained to be slightly less than the values reported in literature for 2H TMD monolayers of MoS2, MoSe2, and WS2. Furthermore, we simulate the impact of defects, such as vacancy, antisite and substitution defects, on the electronic, optical and thermoelectric properties of monolayer WTe2. Particularly, the Te- O-2 substitution defect in parallel orientation yields negative formation energy, indicating that the relevant defect may form spontaneously under relevant experimental conditions. We reveal that the electronic band structure of WTe2 monolayer is significantly influenced by the presence of the considered defects. According to the calculated band gap values, a lowering of the conduction band minimum gives rise to metallic characteristics to the structure for the single Te(1) vacancy, a diagonal Te line defect, and the Te(1)-O-2 substitution, while the other investigated defects cause an opening of a small positive band gap at the Fermi level. Consequently, the real ( epsilon(1)(omega)) and imaginary ( epsilon(2)(omega)) parts of the dielectric constant at low frequencies are very sensitive to the applied defects, whereas we find that the absorbance (A) at optical frequencies is less significantly affected. We also predict that certain point defects can enhance the otherwise moderate value of S in pristine WTe2 to values relevant for thermoelectric applications. The described WTe2 monolayers, as functionalized with the considered defects, offer the possibility to be applied in optical, electronic, and thermoelectric devices.

DOI: 10.1038/s41598-022-16899-5

Berry curvature-induced local spin polarisation in gated graphene/WTe2 heterostructures

L. Powalla, J. Kiemle, E. J. Konig, A. P. Schnyder, J. Knolle, K. Kern, A. Holleitner, C. Kastl, M. Burghard

Nature Communications 13 (1), 3152 (2022).

Show Abstract

Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric spin valve experiments have thus far provided global information on such devices, while leaving the local interplay between symmetry breaking, charge flow across the heterointerface and aspects of topology unexplored. Here, we probe the gate-tunable local spin polarisation in current-driven graphene/WTe2 heterostructures through magneto-optical Kerr microscopy. Even for a nominal in-plane transport, substantial out-of-plane spin accumulation is induced by a corresponding out-of-plane current flow. We present a theoretical model which fully explains the gate- and bias-dependent onset and spatial distribution of the intense Kerr signal as a result of a non-linear anomalous Hall effect in the heterostructure, which is enabled by its reduced point group symmetry. Our findings unravel the potential of 2D heterostructure engineering for harnessing topological phenomena for spintronics, and constitute an important step toward nanoscale, electrical spin control. Spin-based electronics offers significantly improved efficiency, but a major challenge is the electric manipulation of spin. Here, Powalla et al find a large gate induced spinpolarization in graphene/WTe2 heterostructures, illustrating the potential of such heterostructures for spintronics.

DOI: 10.1038/s41467-022-30744-3

Impact of domain disorder on optoelectronic properties of layered semimetal MoTe2

M. P. Singh, J. Kiemle, I. Ozdemir, P. Zimmermann, T. Taniguchi, K. Watanabe, M. Burghard, O. U. Akturk, C. Kastl, A. W. Holleitner

2d Materials 9 (1), 11002 (2022).

Show Abstract

We address the impact of crystal phase disorder on the generation of helicity-dependent photocurrents in layered MoTe2, which is one of the van der Waals materials to realize the topological type-II Weyl semimetal phase. Using scanning photocurrent microscopy, we spatially probe the phase transition and its hysteresis between the centrosymmetric, monoclinic 1T' phase to the symmetry-broken, orthorhombic Td phase as a function of temperature. We find a highly disordered photocurrent response in the intermediate temperature regime. Moreover, we demonstrate that helicity-dependent and ultrafast photocurrents in MoTe2 arise most likely from a local breaking of the electronic symmetries. Our results highlight the prospects of local domain morphologies and ultrafast relaxation dynamics on the optoelectronic properties of low-dimensional van der Waals circuits.

DOI: 10.1088/2053-1583/ac3e03

The role of chalcogen vacancies for atomic defect emission in MoS2

E. Mitterreiter, B. Schuler, A. Micevic, D. Hernangomez-Perez, K. Barthelmi, K. A. Cochrane, J. Kiemle, F. Sigger, J. Klein, E. Wong, E. S. Barnard, K. Watanabe, T. Taniguchi, M. Lorke, F. Jahnke, J. J. Finley, A. M. Schwartzberg, D. Y. Qiu, S. Refaely-Abramson, A. W. Holleitner, A. Weber-Bargioni, C. Kastl

Nature Communications 12 (1), 3822 (2021).

Show Abstract

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS2. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure. The defect generation rate, atomic imaging and the optical signatures support this claim. We discriminate the narrow linewidth photoluminescence signatures of vacancies, resulting predominantly from localized defect orbitals, from broad luminescence features in the same spectral range, resulting from adsorbates. Vacancies can be patterned with a precision below 10nm by ion beams, show single photon emission, and open the possibility for advanced defect engineering of 2D semiconductors at the ultimate scale. The relation between the microscopic structure and the optical properties of atomic defects in 2D semiconductors is still debated. Here, the authors correlate different fabrication processes, optical spectroscopy and electron microscopy to identify the optical signatures of chalcogen vacancies in monolayer MoS2.

DOI: 10.1038/s41467-021-24102-y

Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS2

J. Klein, L. Sigl, S. Gyger, K. Barthelmi, M. Florian, S. Rey, T. Taniguchi, K. Watanabe, F. Jahnke, C. Kastl, V. Zwiller, K. D. Jons, K. Müller, U. Wurstbauer, J. J. Finley, A. W. Holleitner

Acs Photonics 8 (2), 669-677 (2021).

Show Abstract

We demonstrate the on-demand creation and positioning of photon emitters in atomically thin MoS2 with very narrow ensemble broadening and negligible background luminescence. Focused helium-ion beam irradiation creates 100s to 1000s of such mono-typical emitters at specific positions in the MoS2 monolayers. Individually measured photon emitters show anti-bunching behavior with a g(2)(0) similar to 0.23 and 0.27. From a statistical analysis, we extract the creation yield of the He-ion induced photon emitters in MoS2 as a function of the exposed area, as well as the total yield of single emitters as a function of the number of He ions when single spots are irradiated by He ions. We reach probabilities as high as 18% for the generation of individual and spectrally clean photon emitters per irradiated single site. Our results firmly establish 2D materials as a platform for photon emitters with unprecedented control of position as well as photophysical properties owing to the all-interfacial nature.

DOI: 10.1021/acsphotonics.0c01907

Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS2 van der Waals Heterodevices

A. Hotger, J. Klein, K. Barthelmi, L. Sigl, F. Sigger, W. Manner, S. Gyger, M. Florian, M. Lorke, F. Jahnke, T. Taniguchi, K. Watanabe, K. D. Jons, U. Wurstbauer, C. Kastl, K. Müller, J. J. Finley, A. W. Holleitner

Nano Letters 21 (2), 1040-1046 (2021).

Show Abstract

We demonstrate electrostatic switching of individual, site-selectively generated matrices of single photon emitters (SPEs) in MoS2 van der Waals heterodevices. We contact monolayers of MoS2 in field-effect devices with graphene gates and hexagonal boron nitride as the dielectric and graphite as bottom gates. After the assembly of such gate-tunable heterodevices, we demonstrate how arrays of defects, that serve as quantum emitters, can be site-selectively generated in the monolayer MoS2 by focused helium ion irradiation. The SPEs are sensitive to the charge carrier concentration in the MoS2 and switch on and off similar to the neutral exciton in MoS2 for moderate electron doping. The demonstrated scheme is a first step for producing scalable, gate-addressable, and gate-switchable arrays of quantum light emitters in MoS2 heterostacks.

DOI: 10.1021/acs.nanolett.0c04222

Ultrafast and Local Optoelectronic Transport in Topological Insulators

J. Kiemle, P. Seifert, A. W. Holleitner, C. Kastl

Physica Status Solidi B-Basic Solid State Physics 258 (1), 2000033 (2021).

Show Abstract

Recently, topological insulators (TIs) were discovered as a new class of materials representing a subset of topological quantum matter. While a TI possesses a bulk band gap similar to an ordinary insulator, it exhibits gapless states at the surface featuring a spin-helical Dirac dispersion. Due to this unique surface band structure, TIs may find use in (opto)spintronic applications. Herein, optoelectronic methods are discussed to characterize, control, and read-out surface state charge and spin transport of 3D TIs. In particular, time- and spatially-resolved photocurrent microscopy at near-infrared excitation can give fundamental insights into charge carrier dynamics, local electronic properties, and the interplay between bulk and surface currents. Furthermore, possibilities of applying such ultrafast optoelectronic methods to study Berry curvature-related transport phenomena in topological semimetals are discussed.

DOI: 10.1002/pssb.202000033

Light-field and spin-orbit-driven currents in van der Waals materials

J. Kiemle, P. Zimmermann, A. W. Holleitner, C. Kastl

Nanophotonics 9 (9), 2693-2708 (2020).

Show Abstract

This review aims to provide an overview over recent developments of light-driven currents with a focus on their application to layered van der Waals materials. In topological and spin-orbit dominated van der Waals materials helicity-driven and light-field-driven currents are relevant for nanophotonic applications from ultrafast detectors to onchip current generators. The photon helicity allows addressing chiral and non-trivial surface states in topological systems, but also the valley degree of freedom in two-dimensional van der Waals materials. The underlying spinorbit interactions break the spatiotemporal electrodynamic symmetries, such that directed currents can emerge after an ultrafast laser excitation. Equally, the light-field of few-cycle optical pulses can coherently drive the transport of charge carriers with sub-cycle precision by generating strong and directed electric fields on the atomic scale. Ultrafast light-driven currents may open up novel perspectives at the interface between photonics and ultrafast electronics.

DOI: 10.1515/nanoph-2020-0226

Atomistic defects as single-photon emitters in atomically thin MoS2

K. Barthelmi, J. Klein, A. Hotger, L. Sigl, F. Sigger, E. Mitterreiter, S. Rey, S. Gyger, M. Lorke, M. Florian, F. Jahnke, T. Taniguchi, K. Watanabe, V. Zwiller, K. D. Jons, U. Wurstbauer, C. Kastl, A. Weber-Bargioni, J. J. Finley, K. Müller, A. W. Holleitner

Applied Physics Letters 117 (7), 70501 (2020).

Show Abstract

Precisely positioned and scalable single-photon emitters (SPEs) are highly desirable for applications in quantum technology. This Perspective discusses single-photon-emitting atomistic defects in monolayers of MoS2 that can be generated by focused He-ion irradiation with few nanometers positioning accuracy. We present the optical properties of the emitters and the possibilities to implement them into photonic and optoelectronic devices. We showcase the advantages of the presented emitters with respect to atomistic positioning, scalability, long (microsecond) lifetime, and a homogeneous emission energy within ensembles of the emitters. Moreover, we demonstrate that the emitters are stable in energy on a timescale exceeding several weeks and that temperature cycling narrows the ensembles' emission energy distribution.

DOI: 10.1063/5.0018557

Atomistic Positioning of Defects in Helium Ion Treated Single-Layer MoS2

E. Mitterreiter, B. Schuler, K. A. Cochrane, U. Wurstbauer, A. Weber-Bargioni, C. Kastl, A. W. Holleitner

Nano Letters 20 (6), 4437-4444 (2020).

Show Abstract

Structuring materials with atomic precision is the ultimate goal of nanotechnology and is becoming increasingly relevant as an enabling technology for quantum electronics/spintronics and quantum photonics. Here, we create atomic defects in monolayer MoS2 by helium ion (He-ion) beam lithography with a spatial fidelity approaching the single-atom limit in all three dimensions. Using low-temperature scanning tunneling microscopy (STM), we confirm the formation of individual point defects in MoS2 upon He-ion bombardment and show that defects are generated within 9 nm of the incident helium ions. Atom-specific sputtering yields are determined by analyzing the type and occurrence of defects observed in high-resolution STM images and compared with with Monte Carlo simulations. Both theory and experiment indicate that the He-ion bombardment predominantly generates sulfur vacancies.

DOI: 10.1021/acs.nanolett.0c01222

In-plane anisotropy of the photon-helicity induced linear Hall effect in few-layer WTe2

P. Seifert, F. Sigger, J. Kiemle, K. Watanabe, T. Taniguchi, C. Kastl, U. Wurstbauer, A. Holleitner

Physical Review B 99 (16), 161403 (2019).

Show Abstract

Using Hall photovoltage measurements, we demonstrate that a linear transverse Hall voltage can be induced in few-layer WTe2 under circularly polarized light illumination. By applying a bias voltage along different crystal axes, we find that the photon-helicity induced Hall effect coincides with a particular crystal axis. Our results are consistent with the underlying Berry curvature exhibiting a dipolar distribution due to the breaking of crystal inversion symmetry. Using time-resolved optoelectronic autocorrelation spectroscopy, we find that the decay time of the detected Hall voltage exceeds the electron-phonon scattering time by orders of magnitude but is consistent with the comparatively long spin lifetime of carriers in the momentum-indirect electron and hole pockets in WTe2. Our observation suggests that a helicity induced nonequilibrium spin density on the Fermi surface after the initial charge carrier relaxation gives rise to a linear Hall effect.

DOI: 10.1103/PhysRevB.99.161403

Quantized Conductance in Topological Insulators Revealed by the Shockley-Ramo Theorem

P. Seifert, M. Kundinger, G. Shi, X. Y. He, K. H. Wu, Y. Q. Li, A. Holleitner, C. Kastl

Physical Review Letters 122 (14), 146804 (2019).

Show Abstract

Crystals with symmetry-protected topological order, such as topological insulators, promise coherent spin and charge transport phenomena even in the presence of disorder at room temperature. We demonstrate how to image and read out the local conductance of helical surface modes in the prototypical topological insulators Bi2Se3 and BiSbTe3. We apply the so-called Shockley-Ramo theorem to design an optoelectronic probe circuit for the gapless surface states, and we find a well-defined conductance quantization at le(2)/h within the experimental error without any external magnetic field. The unprecedented response is a clear signature of local spin-polarized transport, and it can be switched on and off via an electrostatic field effect. The macroscopic, global readout scheme is based on an electrostatic coupling from the local excitation spot to the readout electrodes, and it does not require coherent transport between electrodes, in contrast to the conventional Landauer-Biittiker description. It provides a generalizable platform for studying further nontrivial gapless systems such as Weyl semimetals and quantum spin-Hall insulators.

DOI: 10.1103/PhysRevLett.122.146804

Accept privacy?

Scroll to top