Bayesian Optimization for Robust State Preparation in Quantum Many-Body Systems
T. Blatz, J. Kwan, J. Léonard, A. Bohrdt
Quantum 8, 1388 (2024).
New generations of ultracold-atom experiments are continually raising the demand for efficient solutions to optimal control problems. Here, we apply Bayesian optimization to improve a state-preparation protocol recently implemented in an ultracold-atom system to realize a two-particle fractional quantum Hall state. Compared to manual ramp design, we demonstrate the superior performance of our optimization approach in a numerical simulation - resulting in a protocol that is 10 x faster at the same fidelity, even when taking into account experimentally realistic levels of disorder in the system. We extensively analyze and discuss questions of robustness and the relationship between numerical simulation and experimental realization, and how to make the best use of the surrogate model trained during optimization. We find that numerical simulation can be expected to substantially reduce the number of experiments that need to be performed with even the most basic transfer learning techniques. The proposed protocol and workflow will pave the way toward the realization of more complex many-body quantum states in experiments.
Neural network approach to quasiparticle dispersions in doped antiferromagnets
H. Lange, F. Döschl, J. Carrasquilla, A. Bohrdt
Communications Physics 7 (1), 187 (2024).
Numerically simulating large, spinful, fermionic systems is of great interest in condensed matter physics. However, the exponential growth of the Hilbert space dimension with system size renders exact quantum state parameterizations impractical. Owing to their representative power, neural networks often allow to overcome this exponential scaling. Here, we investigate the ability of neural quantum states (NQS) to represent the bosonic and fermionic t - J model - the high interaction limit of the Hubbard model - on various 1D and 2D lattices. Using autoregressive, tensorized recurrent neural networks (RNNs), we study ground state representations upon hole doping the half-filled system. Additionally, we propose a method to calculate quasiparticle dispersions, applicable to any network architecture or lattice geometry, and allowing to infer the low-energy physics from NQS. By analyzing the strengths and weaknesses of the RNN ansatz we shed light on the challenges and promises of NQS for simulating bosonic and fermionic systems. Neural network quantum states (NQS) are a promising method to simulate large fermionic systems. This work reports on accurate simulations of the t-J model in 1D and 2D lattices by means of NQS based on a recurrent neural network (RNN) architecture focusing on the calculation of dispersion relations, for which a general method is introduced, and on the performance of the RNN ansatz upon doping.
Attraction from kinetic frustration in ladder systems
I. Morera, A. Bohrdt, W. W. Ho, E. Demler
Physical Review Research 6 (2), 23196 (2024).
We analyze the formation of multiparticle bound states in ladders with frustrated kinetic energy in twocomponent bosonic and two-component fermionic systems. We focus on the regime of light doping relative to insulating states at half-filling, spin polarization close to 100%, and strong repulsive interactions. A special feature of these systems is that the binding energy scales with single-particle tunneling t rather than exchange interactions, since effective attraction arises from alleviating kinetic frustration. For two-component Fermi systems on a zigzag ladder we find a bound state between a hole and a flipped spin (magnon) with a binding energy that can be as large as 0.6t. We demonstrate that magnon-hole attraction leads to formation of clusters comprising several holes and magnons, and we expound on antiferromagentic correlations for the transverse spin components inside the clusters. We identify several many-body states that result from self-organization of multiparticle bound states, including a Luttinger liquid of hole-magnon pairs and a density wave state of two-hole-three-magnon composites. We establish a symmetry between the spectra of Bose and Fermi systems and use it to establish the existence of antibound states in two-component Bose mixtures with SU(2) symmetric repulsion on a zigzag ladder. We also consider Bose and Fermi systems on a square ladder with flux and demonstrate that both systems support bound states. We discuss experimental signatures of multiparticle bound states in both equilibrium and dynamical experiments. We point out intriguing connections between these systems and the quark bag model in QCD.
Detecting hidden order in fractional Chern insulators
F. Pauw, F. A. Palm, U. Schollwöck, A. Bohrdt, S. Paeckel, F. Grusdt
Physical Review Research 6 (2), 23180 (2024).
Topological phase transitions go beyond Ginzburg and Landau's paradigm of spontaneous symmetry breaking and occur without an associated local order parameter. Instead, such transitions can be characterized by the emergence of nonlocal order parameters, which require measurements on extensively many particles simultaneously-an impossible venture in real materials. On the other hand, quantum simulators have demonstrated such measurements, making them prime candidates for experimental confirmation of nonlocal topological order. Here, building upon the recent advances in preparing few-particle fractional Chern insulators using ultracold atoms and photons, we propose a realistic scheme for detecting the hidden off-diagonal long-range order (HODLRO) characterizing Laughlin states. Furthermore, we demonstrate the existence of this hidden order in fractional Chern insulators, specifically for the nu = 1/2-Laughlin state in the isotropic Hofstadter-Bose-Hubbard model. This is achieved by large-scale numerical density matrix renormalization group (DMRG) simulations based on matrix product states, for which we formulate an efficient sampling procedure providing direct access to HODLRO in close analogy to the proposed experimental scheme. We confirm the characteristic power-law scaling of HODLRO, with an exponent 1/nu = 2, and show that its detection requires only a few thousand snapshots. This makes our scheme realistically achievable with current technology and paves the way for further analysis of nonlocal topological orders, e.g., in topological states with non-Abelian anyonic excitations.
Magnetic polarons beyond linear spin-wave theory: Mesons dressed by magnons
P. Bermes, A. Bohrdt, F. Grusdt
Physical Review B 109 (20), 205104 (2024).
"When a mobile hole is doped into an antiferromagnet, its movement will distort the surrounding magnetic order and yield a magnetic polaron. The resulting complex interplay of spin and charge degrees of freedom gives rise to very rich physics and is widely believed to be at the heart of high -temperature superconductivity in cuprates. In this paper, we develop a quantitative theoretical formalism, based on the phenomenological parton description, to describe magnetic polarons in the strong -coupling regime. We construct an effective Hamiltonian with weak coupling to the spin -wave excitations in the background, making the use of standard polaronic methods possible. Our starting point is a single hole doped into an antiferromagnet described by a ""geometric string"" capturing the strongly correlated hopping processes of charge and spin degrees of freedom, beyond linear spin -wave approximation. Subsequently, we introduce magnon excitations through a generalized 1 / S expansion and derive an effective coupling of these spin waves to the hole plus the string (the meson) to arrive at an effective polaron Hamiltonian with density -density type interactions. After making a Born-Oppenheimer-type approximation, this system is solved using the self -consistent Born approximation to extract the renormalized polaron properties. We apply our formalism (i) to calculate beyond linear spin -wave angle -resolved photoemission spectroscopy spectra, (ii) to reveal the interplay of rovibrational meson excitations, and (iii) to analyze the pseudogap expected at low doping. Moreover, our work paves the way for exploring magnetic polarons out of equilibrium or in frustrated systems, where weak -coupling approaches are desirable and going beyond linear spin -wave theory becomes necessary."
Enhancing variational Monte Carlo simulations using a programmable quantum simulator
M. S. Moss, S. Ebadi, T. T. Wang, G. Semeghini, A. Bohrdt, M. D. Lukin, R. G. Melko
Physical Review A 109 (3), 32410 (2024).
Programmable quantum simulators based on Rydberg atom arrays are a fast-emerging quantum platform, bringing together long coherence times, high-fidelity operations, and large numbers of interacting qubits deterministically arranged in flexible geometries. Today's Rydberg array devices are demonstrating their utility as quantum simulators for studying phases and phase transitions in quantum matter. In this paper, we show that unprocessed and imperfect experimental projective measurement data can be used to enhance in silico simulations of quantum matter, by improving the performance of variational Monte Carlo simulations. As an example, we focus on data spanning the disordered-to-checkerboard transition in a 16 x 16 square-lattice array [S. Ebadi et al., Nature (London) 595, 227 (2021)] and employ the data-enhanced variational Monte Carlo algorithm to train powerful autoregressive wave-function ansatze based on recurrent neural networks (RNNs). We observe universal improvements in the convergence times of our simulations with this hybrid training scheme. Notably, we also find that pretraining with experimental data enables relatively simple RNN ansatze to accurately capture phases of matter that are not learned with a purely variational training approach. Our work highlights the promise of hybrid quantum-classical approaches for large-scale simulation of quantum many-body systems, combining autoregressive language models with experimental data from existing quantum devices.
Feshbach resonance in a strongly repulsive ladder of mixed dimensionality: A possible scenario for bilayer nickelate superconductors
H. Lange, L. Homeier, E. Demler, U. Schollwöck, F. Grusdt, A. Bohrdt
Physical Review B 109 (4), 45127 (2024).
Since the discovery of superconductivity in cuprate materials, the minimal ingredients for high-Tc superconductivity have been an outstanding puzzle. Motivated by the recently discovered nickelate bilayer superconductor La3Ni2O7 under pressure, we study a minimal bilayer model, in which, as in La3Ni2O7, interlayer and intralayer magnetic interactions but no interlayer hopping are present: A mixed-dimensional (mixD) t-J model. In the setting of a mixD ladder, we show that the system exhibits a crossover associated with a Feshbach resonance: From a closed-channel-dominated regime of tightly bound bosonic pairs of holes to an open-channel-dominated regime of spatially more extended Cooper pairs. The crossover can be tuned by varying doping, or by a nearest-neighbor Coulomb repulsion V that we include in our model. Using density matrix renormalization group simulations and analytical descriptions of both regimes, we find that the ground state is a Luther-Emery liquid, competing with a density wave of tetraparton plaquettes at commensurate filling delta = 0.5 at large repulsion, and exhibits a pairing dome where binding is facilitated by doping. Our observations can be understood in terms of pairs of correlated spinon-chargon excitations constituting the open channel, which are subject to attractive interactions mediated by the closed channel of tightly bound chargon-chargon pairs. When the closed channel is lowered in energy by doping or tuning V, a Feshbach resonance is realized, associated with a dome in the binding energy. Our predictions can be directly tested in state-of-the art quantum simulators, and we argue that the pairing mechanism we describe may be realized in the nickelate bilayer superconductor La3Ni2O7.
Dichotomy of heavy and light pairs of holes in the t-J model
A. Bohrdt, E. Demler, F. Grusdt
Nature Communications 14 (1), 8017 (2023).
A key step in unraveling the mysteries of materials exhibiting unconventional superconductivity is to understand the underlying pairing mechanism. While it is widely agreed upon that the pairing glue in many of these systems originates from antiferromagnetic spin correlations, a microscopic description of pairs of charge carriers remains lacking. Here we use state-of-the art numerical methods to probe the internal structure and dynamical properties of pairs of charge carriers in quantum antiferromagnets in four-legged cylinders. Exploiting the full momentum resolution in our simulations, we are able to distinguish two qualitatively different types of bound states: a highly mobile, meta-stable pair, which has a dispersion proportional to the hole hopping t, and a heavy pair, which can only move due to spin exchange processes and turns into a flat band in the Ising limit of the model. Understanding the pairing mechanism can on the one hand pave the way to boosting binding energies in related models, and on the other hand enable insights into the intricate competition of various phases of matter in strongly correlated electron systems.
Adaptive Quantum State Tomography with Active Learning
H. Lange, M. Kebric, M. Buser, U. Schollwöck, F. Grusdt, A. Bohrdt
Quantum 7, 1129 (2023).
Recently, tremendous progress has been made in the field of quantum science and technologies: different platforms for quantum simulation as well as quantum computing, ranging from superconduct-ing qubits to neutral atoms, are start-ing to reach unprecedentedly large sys-tems. In order to benchmark these sys-tems and gain physical insights, the need for efficient tools to characterize quantum states arises. The exponential growth of the Hilbert space with system size ren-ders a full reconstruction of the quantum state prohibitively demanding in terms of the number of necessary measurements. Here we propose and implement an ef-ficient scheme for quantum state tomog-raphy using active learning. Based on a few initial measurements, the active learn-ing protocol proposes the next measure-ment basis, designed to yield the max-imum information gain. We apply the active learning quantum state tomogra-phy scheme to reconstruct different multi-qubit states with varying degree of entan-glement as well as to ground states of the XXZ model in 1D and a kinetically con-strained spin chain. In all cases, we obtain a significantly improved reconstruction as compared to a reconstruction based on the exact same number of measurements and measurement configurations, but with ran-domly chosen basis configurations. Our scheme is highly relevant to gain physical insights in quantum many-body systems as well as for benchmarking and character-izing quantum devices, e.g. for quantum simulation, and paves the way for scalable adaptive protocols to probe, prepare, and manipulate quantum systems.
Fluctuation based interpretable analysis scheme for quantum many-body snapshots
H. Schlömer, A. Bohrdt
Scipost Physics 15 (3), 99 (2023).
Microscopically understanding and classifying phases of matter is at the heart of strongly-correlated quantum physics. With quantum simulations, genuine projective measurements (snapshots) of the many-body state can be taken, which include the full information of correlations in the system. The rise of deep neural networks has made it possible to routinely solve abstract processing and classification tasks of large datasets, which can act as a guiding hand for quantum data analysis. However, though proven to be successful in differentiating between different phases of matter, conventional neural networks mostly lack interpretability on a physical footing. Here, we combine confusion learning [1] with correlation convolutional neural networks [2], which yields fully interpretable phase detection in terms of correlation functions. In particular, we study thermodynamic properties of the 2D Heisenberg model, whereby the trained network is shown to pick up qualitative changes in the snapshots above and below a characteristic temperature where magnetic correlations become significantly long-range. We identify the full counting statistics of nearest neighbor spin correlations as the most important quantity for the decision process of the neural network, which go beyond averages of local observables. With access to the fluctuations of second-order correlations - which indirectly include contributions from higher order, long-range correlations - the network is able to detect changes of the specific heat and spin susceptibility, the latter being in analogy to magnetic properties of the pseudogap phase in high-temperature superconductors [3]. By combining the confusion learning scheme with transformer neural networks, our work opens new directions in interpretable quantum image processing being sensible to long-range order.
Quantifying hole-motion-induced frustration in doped antiferromagnets by Hamiltonian reconstruction
H. Schlömer, T. A. Hilker, I. Bloch, U. Schollwöck, F. Grusdt, A. Bohrdt
Communications Materials 4 (1), 64 (2023).
Unveiling the microscopic origins of quantum phases dominated by the interplay of spin and motional degrees of freedom constitutes one of the central challenges in strongly correlated many-body physics. When holes move through an antiferromagnetic spin background, they displace the positions of spins, which induces effective frustration in the magnetic environment. However, a concrete characterization of this effect in a quantum many-body system is still an unsolved problem. Here we present a Hamiltonian reconstruction scheme that allows for a precise quantification of hole-motion-induced frustration. We access non-local correlation functions through projective measurements of the many-body state, from which effective spin-Hamiltonians can be recovered after detaching the magnetic background from dominant charge fluctuations. The scheme is applied to systems of mixed dimensionality, where holes are restricted to move in one dimension, but SU(2) superexchange is two-dimensional. We demonstrate that hole motion drives the spin background into a highly frustrated regime, which can quantitatively be described by an effective J(1)-J(2)-type spin model. We exemplify the applicability of the reconstruction scheme to ultracold atom experiments by recovering effective spin-Hamiltonians of experimentally obtained 1D Fermi-Hubbard snapshots. Our method can be generalized to fully 2D systems, enabling promising microscopic perspectives on the doped Hubbard model.
Realistic scheme for quantum simulation of Z2 lattice gauge theories with dynamical matter in (2+1)D
L. Homeier, A. Bohrdt, S. Linsel, E. Demler, J. C. Halimeh, F. Grusdt
Communications Physics 6 (1), 127 (2023).
Gauge fields coupled to dynamical matter are ubiquitous in many disciplines of physics, ranging from particle to condensed matter physics, but their implementation in large-scale quantum simulators remains challenging. Here we propose a realistic scheme for Rydberg atom array experiments in which a Z2 gauge structure with dynamical charges emerges on experimentally relevant timescales from only local two-body interactions and one-body terms in two spatial dimensions. The scheme enables the experimental study of a variety of models, including (2+ 1)D Z2 lattice gauge theories coupled to different types of dynamical matter and quantum dimer models on the honeycomb lattice, for which we derive effective Hamiltonians. We discuss ground-state phase diagrams of the experimentally most relevant effective Z2 lattice gauge theories with dynamical matter featuring various confined and deconfined, quantum spin liquid phases. Further, we present selected probes with immediate experimental relevance, including signatures of disorder-free localization and a thermal deconfinement transition of two charges.
Robust stripes in the mixed-dimensional t-J model
H. Schlömer, A. Bohrdt, L. Pollet, U. Schollwöck, F. Grusdt
Physical Review Research 5 (2), L022027 (2023).
Microscopically understanding competing orders in strongly correlated systems is a key challenge in modern quantum many-body physics. For example, the origin of stripe order and its relation to pairing in the Fermi -Hubbard model remains one of the central questions, and may help to understand the origin of high-temperature superconductivity in cuprates. Here, we analyze stripe formation in the doped mixed-dimensional (mixD) variant of the t - J model, where charge carriers are restricted to move only in one direction, whereas magnetic SU(2) interactions are two-dimensional. Using the density matrix renormalization group at finite temperature, we find a stable vertical stripe phase in the absence of pairing, featuring incommensurate magnetic order and long-range charge density wave profiles over a wide range of dopings. We find high critical temperatures on the order of the magnetic coupling similar to J/2, hence being within reach of current quantum simulators. Snapshots of the many-body state, accessible to quantum simulators, reveal hidden spin correlations in the mixD setting, whereby antiferromagnetic correlations are enhanced when considering purely the magnetic background. The proposed model can be viewed as realizing a parent Hamiltonian of the stripe phase, whose hidden spin correlations lead to the predicted resilience against quantum and thermal fluctuations.
Robust quantum many-body scars in lattice gauge theories
J. C. Halimeh, L. Barbiero, P. Hauke, F. Grusdt, A. Bohrdt
Quantum 7, 17 (2023).
Quantum many-body scarring is a paradigm of weak ergodicity breaking arising due to the presence of special nonthermal many-body eigenstates that possess low entanglement entropy, are equally spaced in energy, and concentrate in certain parts of the Hilbert space. Though scars have been shown to be intimately connected to gauge theories, their stability in such experimentally relevant models is still an open question, and it is generally considered that they exist only under fine-tuned conditions. In this work, we show through Krylov-based time-evolution methods how quantum many-body scars can be made robust in the presence of experimental errors through utilizing terms linear in the gaugesymmetry generator or a simplified pseudogenerator in U(1) and Z2 lattice gauge theories. Our findings are explained by the concept of quantum Zeno dynamics. Our experimentally feasible methods can be readily implemented in existing large-scale ultracold-atom quantum simulators and setups of Rydberg atoms with optical tweezers.
Pairing of holes by confining strings in antiferromagnets
F. Grusdt, E. Demler, A. Bohrdt
Scipost Physics 14 (5), 90 (2023).
In strongly correlated quantum materials, the behavior of charge carriers is dominated by strong electron-electron interactions. These can lead to insulating states with spin order, and upon doping to competing ordered states including unconventional super-conductivity. The underlying pairing mechanism remains poorly understood however, even in strongly simplified theoretical models. Recent advances in quantum simulation allow to study pairing in paradigmatic settings, e.g. in the t - J and t - Jz Hamiltoni-ans. Even there, the most basic properties of paired states of only two dopants, such as their dispersion relation and excitation spectra, remain poorly studied in many cases. Here we provide new analytical insights into a possible string-based pairing mechanism of mobile holes in an antiferromagnet. We analyze an effective model of partons con-nected by a confining string and calculate the spectral properties of bound states. Our model is equally relevant for understanding Hubbard-Mott excitons consisting of a bound doublon-hole pair or confined states of dynamical matter in lattice gauge theories, which motivates our study of different parton statistics. Although an accurate semi-analytic es-timation of binding energies is challenging, our theory provides a detailed understanding of the internal structure of pairs. For example, in a range of settings we predict heavy states of immobile pairs with flat-band dispersions - including for the lowest-energy d -wave pair of fermions. Our findings shed new light on the long-standing question about the origin of pairing and competing orders in high-temperature superconductors.
Probing finite-temperature observables in quantum simulators of spin systems with short-time dynamics
A. Schuckert, A. Bohrdt, E. Crane, M. Knap
Physical Review B 107 (14), L140410 (2023).
Preparing finite-temperature states in quantum simulators of spin systems, such as trapped ions or Rydberg atoms in optical tweezers, is challenging due to their almost perfect isolation from the environment. Here, we show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality and equivalent to the one in Lu et al., PRX Quantum 2, 020321 (2021). It consists of classical importance sampling of initial states and a measurement of the Loschmidt echo with a quantum simulator. We use the method as a quantum-inspired classical algorithm and simulate the protocol with matrix product states to analyze the requirements on a quantum simulator. This way, we show that a finite-temperature phase transition in the long-range transverse-field Ising model can be characterized in trapped ion quantum simulators. We propose a concrete measurement protocol for the Loschmidt echo and discuss the influence of measurement noise, dephasing, as well as state preparation and measurement errors. We argue that the algorithm is robust against those imperfections under realistic conditions.
Ferromagnetism and skyrmions in the Hofstadter-Fermi-Hubbard model
F. A. Palm, M. Kurttutan, A. Bohrdt, U. Schollwöck, F. Grusdt
New Journal of Physics 25 (2), 23021 (2023).
Strongly interacting fermionic systems host a variety of interesting quantum many-body states with exotic excitations. For instance, the interplay of strong interactions and the Pauli exclusion principle can lead to Stoner ferromagnetism, but the fate of this state remains unclear when kinetic terms are added. While in many lattice models the fermions' dispersion results in delocalization and destabilization of the ferromagnet, flat bands can restore strong interaction effects and ferromagnetic correlations. To reveal this interplay, here we propose to study the Hofstadter-Fermi-Hubbard model using ultracold atoms. We demonstrate, by performing large-scale density-matrix renormalization group simulations, that this model exhibits a lattice analog of the quantum Hall (QH) ferromagnet at magnetic filling factor nu = 1. We reveal the nature of the low energy spin-singlet states around nu asymptotic to 1 and find that they host quasi-particles and quasi-holes exhibiting spin-spin correlations reminiscent of skyrmions. Finally, we predict the breakdown of flat-band ferromagnetism at large fields. Our work paves the way towards experimental studies of lattice QH ferromagnetism, including prospects to study many-body states of interacting skyrmions and explore the relation to high- T-c superconductivity.
Magnetically mediated hole pairing in fermionic ladders of ultracold atoms
S. Hirthe, T. Chalopin, D. Bourgund, P. Bojovic, A. Bohrdt, E. Demler, F. Grusdt, I. Bloch, T. A. Hilker
Nature 613 (7944), 463-+ (2023).
Conventional superconductivity emerges from pairing of charge carriers-electrons or holes-mediated by phonons(1). In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations(2), as captured by models of mobile charges in doped antiferromagnets(3). However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems(4-8), in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions(9). Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings(10), we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole-hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity.
Particle zoo in a doped spin chain: Correlated states of mesons and magnons
P. Cubela, A. Bohrdt, M. Greiner, F. Grusdt
Physical Review B 107 (3), 35105 (2023).
It is a widely accepted view that the interplay of spin and charge degrees of freedom in doped antiferromagnets (AFMs) gives rise to the rich physics of high-temperature superconductors. Nevertheless, it remains unclear how effective low-energy degrees of freedom and the corresponding field theories emerge from microscopic models, including t - J and Hubbard Hamiltonians. A promising view comprises that the charge carriers have a rich internal parton structure on intermediate scales, but the interplay of the emergent partons with collective magnon excitations of the surrounding AFM remains unexplored. Here we study a doped one-dimensional spin chain in a staggered magnetic field and demonstrate that it supports a zoo of various long-lived excitations. These include magnons, mesonic pairs of spinons and chargons along with their rovibrational excitations, and tetraparton bound states of mesons and magnons. We identify these types of quasiparticles in various spectra using density-matrix renormalization group simulations. Moreover, we introduce a strong-coupling theory describing the polaronic dressing and molecular binding of mesons to collective magnon excitations. The effective theory can be solved by standard tools developed for polaronic problems and can be extended to study similar physics in two-dimensional doped AFMs in the future. Experimentally, the doped spin-chain in a staggered field can be directly realized in quantum gas microscopes.
Snapshot-based detection of ?=1/2 Laughlin states: Coupled chains and central charge
F. A. Palm, S. Mardazad, A. Bohrdt, U. Schollwöck, F. Grusdt
Physical Review B 106 (8), L081108 (2022).
Experimental realizations of topologically ordered states of matter, such as fractional quantum Hall states, with cold atoms are now within reach. In particular, optical lattices provide a promising platform for the realization and characterization of such states, where novel detection schemes enable an unprecedented microscopic under-standing. Here we show that the central charge can be directly measured in current cold atom experiments using the number entropy as a proxy for the entanglement entropy. We perform density-matrix renormalization-group simulations of Hubbard-interacting bosons on coupled chains subject to a magnetic field with alpha = 1/4 flux quanta per plaquette. Tuning the interchain hopping, we find a transition from a trivial quasi-one-dimensional phase to the topologically ordered Laughlin state at magnetic filling factor nu = 1/2 for systems of three or more chains. We resolve the transition using the central charge, on-site correlations, momentum distributions, and the many-body Chern number. Additionally, we propose a scheme to experimentally estimate the central charge from Fock basis snapshots. The model studied here is experimentally realizable with existing cold atom techniques and the proposed observables pave the way for the detection and classification of a larger class of interacting topological states of matter.
Schrieffer-Wolff transformations for experiments: Dynamically suppressing virtual doublon-hole excitations in a Fermi-Hubbard simulator
A. Kale, J. H. Huhn, M. Q. Xu, L. H. Kendrick, M. Lebrat, C. Chiu, G. Ji, F. Grusdt, A. Bohrdt, M. Greiner
Physical Review A 106 (1), 12428 (2022).
In strongly interacting systems with a separation of energy scales, low-energy effective Hamiltonians help provide insights into the relevant physics at low temperatures. The emergent interactions in the effective model are mediated by virtual excitations of high-energy states: For example, virtual doublon-hole excitations in the Fermi-Hubbard model mediate antiferromagnetic spin-exchange interactions in the derived effective model, known as the t - J - 3s model. Formally this procedure is described by performing a unitary Schrieffer-Wolff basis transformation. In the context of quantum simulation, it can be advantageous to consider the effective model to interpret experimental results. However, virtual excitations such as doublon-hole pairs can obfuscate the measurement of physical observables. Here we show that quantum simulators allow one to access the effective model even more directly by performing measurements in a rotated basis. We propose a protocol to perform a Schrieffer-Wolff transformation on Fermi-Hubbard low-energy eigenstates (or thermal states) to dynamically prepare approximate t - J - 3s model states using fermionic atoms in an optical lattice. Our protocol involves performing a linear ramp of the optical lattice depth, which is slow enough to eliminate the virtual doublon-hole fluctuations but fast enough to freeze out the dynamics in the effective model. We perform a numerical study using exact diagonalization and find an optimal ramp speed for which the state after the lattice ramp has maximal overlap with the t - J - 3s model state. We compare our numerics to experimental data from our Lithium-6 fermionic quantum gas microscope and show a proof-of-principle demonstration of this protocol. More generally, this protocol can be beneficial to studies of effective models by enabling the suppression of virtual excitations in a wide range of quantum simulation experiments.
Dynamical signatures of thermal spin-charge deconfinement in the doped Ising model
L. Hahn, A. Bohrdt, F. Grusdt
Physical Review B 105 (24), L241113 (2022).
The mechanism underlying charge transport in strongly correlated quantum systems, such as doped antiferromagnetic Mott insulators, remains poorly understood. Here, we study the expansion dynamics of an initially localized hole inside a two-dimensional (2D) Ising antiferromagnet at variable temperature. Using a combination of classical Monte Carlo and truncated-basis methods, we reveal two dynamically distinct regimes: a spin-charge confined region below a critical temperature T*, characterized by slow spreading, and a spin-charge deconfined region above T*, characterized by an unbounded diffusive expansion. The deconfinement temperature T* ti 0.65Jz we find is around the N??el temperature TN = 0.567Jz of the Ising background in 2D, but we expect T* < TN in higher dimensions. In both regimes we find that the mobile hole does not thermalize with the Ising spin background on the considered time scales, indicating weak effective coupling of spin and charge degrees of freedom. Our results can be qualitatively understood by an effective parton model and can be tested experimentally in state-of-the-art quantum gas microscopes.
Characterizing topological excitations of a long-range Heisenberg model with trapped ions
S. Birnkammer, A. Bohrdt, F. Grusdt, M. Knap
Physical Review B 105 (24), L241103 (2022).
Realizing and characterizing interacting topological phases in synthetic quantum systems is a formidable challenge. Here, we propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power -law decaying interactions. Based on analytical and numerical arguments, we show that this model features a quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational symmetry and is reminiscent of the Majumdar-Ghosh state. The different phases can be probed dynamically by measuring the evolution of a fully dimerized state. We moreover introduce an interferometric protocol to characterize the topological excitations and the bulk topological invariants of the interacting many-body system.
Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators
A. Bohrdt, L. Homeier, I. Bloch, E. Demler, F. Grusdt
Nature Physics 18 (6), 651-+ (2022).
Studies of unconventional pairing mechanisms in cold atoms require ultralow temperatures. Large-scale numerics show that certain bilayer models allow for deeply bound and highly mobile pairs of charges at more accessible temperatures. Interacting many-body systems in reduced-dimensional settings, such as ladders and few-layer systems, are characterized by enhanced quantum fluctuations. Recently, two-dimensional bilayer systems have sparked considerable interest because they can host unusual phases, including unconventional superconductivity. Here we present a theoretical proposal for realizing high-temperature pairing of fermions in a class of bilayer Hubbard models. We introduce a general and highly efficient pairing mechanism for mobile charge carriers in doped antiferromagnetic Mott insulators. The pairing is caused by the energy that one charge gains when it follows the path created by another charge. We show that this mechanism leads to the formation of highly mobile but tightly bound pairs in the case of mixed-dimensional Fermi-Hubbard bilayer systems. This setting is closely related to the Fermi-Hubbard model believed to capture the physics of copper oxides, and can be realized in currently available ultracold atom experiments.
Enhancing Disorder-Free Localization through Dynamically Emergent Local Symmetries
J. C. Halimeh, L. Homeier, H. Z. Zhao, A. Bohrdt, F. Grusdt, P. Hauke, J. Knolle
Prx Quantum 3 (2), 19 (2022).
Disorder-free localization is a recently discovered phenomenon of nonergodicity that can emerge in quantum many-body systems hosting gauge symmetries when the initial state is prepared in a superposition of gauge superselection sectors. Thermalization is then prevented up to all accessible evolution times despite the model being nonintegrable and translation invariant. In a recent work [Halimeh et al., arXiv:2111.02427 (2021)], it has been shown that terms linear in the gauge-symmetry generator stabilize disorder-free localization in U(1) gauge theories against gauge errors that couple different superselection sectors. Here, we show in the case of Z2 gauge theories that disorder-free localization can not only be stabilized, but also enhanced by the addition of translation-invariant terms linear in a local Z2 pseudogenerator that acts identically to the full generator in a single superselection sector, but not necessarily outside of it. We show analytically and numerically how this leads through the quantum Zeno effect to the dynamical emergence of a renormalized gauge theory with an enhanced local symmetry, which contains the Z2 gauge symmetry of the ideal model, associated with the Z2 pseudogenerator. The resulting proliferation of superselection sectors due to this dynamically emergent gauge theory creates an effective disorder greater than that in the original model, thereby enhancing disorder-free localization. We demonstrate the experimental feasibility of the Z2 pseudogenerator by providing a detailed readily implementable experimental proposal for the observation of disorder-free localization in a Rydberg setup.
Direct measurement of nonlocal interactions in the many-body localized phase
B. Chiaro, C. Neill, A. Bohrdt, M. Filippone, F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, S. Boixo, D. Buell, B. Burkett, Y. Chen, Z. Chen, R. Collins, A. Dunsworth, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, M. Harrigan, T. Huang, S. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, X. Mi, A. Megrant, M. Mohseni, J. Mutus, M. McEwen, O. Naaman, M. Neeley, M. Niu, A. Petukhov, C. Quintana, N. Rubin, D. Sank, K. Satzinger, T. White, Z. Yao, P. Yeh, A. Zalcman, V. Smelyanskiy, H. Neven, S. Gopalakrishnan, D. Abanin, M. Knap, J. Martinis, P. Roushan
Physical Review Research 4 (1), 13148 (2022).
The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL) phase of matter. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow dephasing and logarithmic entanglement growth,. they commonly result in slow and subtle modifications of the dynamics, rendering their measurement challenging. Here, we experimentally characterize these properties of the MBL phase in a system of coupled superconducting qubits. By implementing phase sensitive techniques, we map out the structure of local integrals of motion in the MBL phase. Tomographic reconstruction of single and two-qubit density matrices allows us to determine the spatial and temporal entanglement growth between the localized sites. In addition, we study the preservation of entanglement in the MBL phase. The interferometric protocols implemented here detect affirmative quantum correlations and exclude artifacts due to the imperfect isolation of the system. By measuring elusive MBL quantities, our work highlights the advantages of phase sensitive measurements in studying novel phases of matter.
Visualizing spinon Fermi surfaces with time-dependent spectroscopy
A. Schuckert, A. Bohrdt, E. Crane, F. Grusdt
Physical Review B 104 (23), 235107 (2021).
Quantum simulation experiments have started to explore regimes that are not accessible with exact numerical methods. To probe these systems and enable new physical insights, the need for measurement protocols arises that can bridge the gap to solid-state experiments, and at the same time make optimal use of the capabilities of quantum simulation experiments. Here we propose applying time-dependent photoemission spectroscopy, an established tool in solid-state systems, in cold atom quantum simulators. Concretely, we suggest combining the method with large magnetic field gradients, unattainable in experiments on real materials, to drive Bloch oscillations of spinons, the emergent quasiparticles of spin liquids. We show in exact diagonalization simulations of the one-dimensional t-J model with a single hole that the spinons start to populate previously unoccupied states in an effective band structure, thus allowing us to visualize states invisible in the equilibrium spectrum. The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons. In numerical simulations of small two-dimensional systems, spectral weight appears at the ground-state energy at momentum q = (pi, pi), where the equilibrium spectral response is strongly suppressed up to higher energies, indicating a possible route toward solving the mystery of the Fermi arcs in the cuprate materials.
Exploration of doped quantum magnets with ultracold atoms
A. Bohrdt, L. Homeier, C. Reinmoser, E. Demler, F. Grusdt
Annals of Physics 435, 168651 (2021).
In the last decade, quantum simulators, and in particular cold atoms in optical lattices, have emerged as a valuable tool to study strongly correlated quantum matter. These experiments are now reaching regimes that are numerically difficult or impossible to access. In particular they have started to fulfill a promise which has contributed significantly to defining and shaping the field of cold atom quantum simulations, namely the exploration of doped and frustrated quantum magnets and the search for the origins of high-temperature superconductivity in the fermionic Hubbard model. Despite many future challenges lying ahead, such as the need to further lower the experimentally accessible temperatures, remarkable studies have already been conducted. Among them, spin-charge separation in one-dimensional systems has been demonstrated, extended-range antiferromagnetism in two-dimensional systems has been observed, connections to modern day large-scale numerical simulations were made, and unprecedented comparisons with microscopic trial wavefunctions have been carried out at finite doping. In many regards, the field has acquired new realms, putting old ideas to a new test and producing new insights and inspiration for the next generation of physicists. In the first part of this paper, we review the results achieved in cold atom realizations of the Fermi-Hubbard model in recent years. We put special emphasis on the new probes available in quantum gas microscopes, such as higher-order correlation functions, full counting statistics, the ability to study far-from -equilibrium dynamics, machine learning and pattern recognition of instantaneous snapshots of the many-body wavefunction, and access to non-local correlators. Our review is written from a theoretical perspective, but aims to provide basic understanding of the experimental procedures. We cover one- dimensional systems, where the phenomenon of spin-charge separation is ubiquitous, and two-dimensional systems where we distinguish between situations with and without doping. Throughout, we focus on the strong coupling regime where the Hubbard inter-actions U dominate and connections to t - J models can be justified. In the second part of this paper, with the stage set and the current state of the field in mind, we propose a new direction for cold atoms to explore: namely mixed-dimensional bilayer systems, where the charge motion is restricted to individual layers which remain coupled through spin-exchange. These systems can be directly realized experimentally and we argue that they have a rich phase diagram, potentially including a strongly correlated BEC-to-BCS cross-over and regimes with different superconducting order parameters, as well as complex parton phases and possibly even analogs of tetraquark states. In particular, we propose a novel, strong pairing mechanism in these systems, which puts the formation of hole pairs at experimentally accessible, elevated temperatures within reach. Ultimately we propose to explore how the physics of the mixed-dimensional bilayer system can be connected to the rich phenomenology of the single-layer Hubbard model. (C) 2021 Elsevier Inc. All rights reserved.
Rotational Resonances and Regge-like Trajectories in Lightly Doped Antiferromagnets
A. Bohrdt, E. Demler, F. Grusdt
Physical Review Letters 127 (19), 197004 (2021).
Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory. Here we propose a rotational variant of angle-resolved photo-emission spectroscopy (ARPES) and calculate rotational spectra numerically using the density-matrix renormalization group. We identify long-lived rotational resonances for an individual dopant, which we interpret as a direct indicator of the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the superexchange coupling. The rotational peaks we find are strongly suppressed in standard ARPES spectra, but we suggest a multiphoton extension of ARPES which allows us to access rotational spectra. Our findings suggest that multiphoton spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.
Analyzing Nonequilibrium Quantum States through Snapshots with Artificial Neural Networks
A. Bohrdt, S. Kim, A. Lukin, M. Rispoli, R. Schittko, M. Knap, M. Greiner, J. Leonard
Physical Review Letters 127 (15), 150504 (2021).
Current quantum simulation experiments are starting to explore nonequilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and timescales. Therefore, the question emerges as to which observables are best suited to study the dynamics in such quantum many-body systems. Using machine learning techniques, we investigate the dynamics and, in particular, the thermalization behavior of an interacting quantum system that undergoes a nonequilibrium phase transition from an ergodic to a many-body localized phase. We employ supervised and unsupervised training methods to distinguish nonequilibrium from equilibrium data, using the network performance as a probe for the thermalization behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results provide a path to analyze highly entangled large-scale quantum states for system sizes where numerical calculations of conventional observables become challenging.
Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid
J. Koepsell, D. Bourgund, P. Sompet, S. Hirthe, A. Bohrdt, Y. Wang, F. Grusdt, E. Demler, G. Salomon, C. Gross, I. Bloch
Science 374 (6563), 82-+ (2021).
The competition between antiferromagnetism and hole motion in two-dimensional Mott insulators lies at the heart of a doping-dependent transition from an anomalous metal to a conventional Fermi liquid. We observe such a crossover in Fermi-Hubbard systems on a cold-atom quantum simulator and reveal the transformation of multipoint correlations between spins and holes upon increasing doping at temperatures around the superexchange energy. Conventional observables, such as spin susceptibility, are furthermore computed from the microscopic snapshots of the system. Starting from a magnetic polaron regime, we find the system evolves into a Fermi liquid featuring incommensurate magnetic fluctuations and fundamentally altered correlations. The crossover is completed for hole dopings around 30%. Our work benchmarks theoretical approaches and discusses possible connections to lowertemperature phenomena.
Higher-order spin-hole correlations around a localized charge impurity
Y. Wang, A. Bohrdt, S. H. Ding, J. Koepsell, E. Demler, F. Grusdt
Physical Review Research 3 (3), 33204 (2021).
Analysis of higher-order correlation functions has become a powerful tool for investigating interacting many-body systems in quantum simulators, such as quantum gas microscopes. Experimental measurements of mixed spin-charge correlation functions in the 2D Hubbard have been used to study equilibrium properties of magnetic polarons and to identify coherent and incoherent regimes of their dynamics. In this paper we consider theoretically an extension of this technique to systems which use a pinning potential to reduce the mobility of a single dopant in the Mott insulating regime of the 2D Hubbard model. We find that localization of the dopant has a dramatic effect on its magnetic dressing. The connected third order spin correlations are weakened in the case of a mobile hole but strengthened near an immobile hole. In the case of the fifth-order correlation function, we find that its bare value has opposite signs in cases of the mobile and of fully pinned dopant, whereas the connected part is similar for both cases. We study suppression of higher-order correlators by thermal fluctuations and demonstrate that they can be observed up to temperatures comparable to the spin-exchange energy J. We discuss implications of our results for understanding the interplay of spin and charge in doped Mott insulators.
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
C. Miles, A. Bohrdt, R. H. Wu, C. Chiu, M. Q. Xu, G. Ji, M. Greiner, K. Q. Weinberger, E. Demler, E. A. Kim
Nature Communications 12 (1), 3905 (2021).
Image-like data from quantum systems promises to offer greater insight into the physics of correlated quantum matter. However, the traditional framework of condensed matter physics lacks principled approaches for analyzing such data. Machine learning models are a powerful theoretical tool for analyzing image-like data including many-body snapshots from quantum simulators. Recently, they have successfully distinguished between simulated snapshots that are indistinguishable from one and two point correlation functions. Thus far, the complexity of these models has inhibited new physical insights from such approaches. Here, we develop a set of nonlinearities for use in a neural network architecture that discovers features in the data which are directly interpretable in terms of physical observables. Applied to simulated snapshots produced by two candidate theories approximating the doped Fermi-Hubbard model, we uncover that the key distinguishing features are fourth-order spin-charge correlators. Our approach lends itself well to the construction of simple, versatile, end-to-end interpretable architectures, thus paving the way for new physical insights from machine learning studies of experimental and numerical data. Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model.
Coupling a Mobile Hole to an Antiferromagnetic Spin Background: Transient Dynamics of a Magnetic Polaron
G. Ji, M. Q. Xu, L. H. Kendrick, C. S. Chiu, J. C. Bruggenjurgen, D. Greif, A. Bohrdt, F. Grusdt, E. Demler, M. Lebrat, M. Greiner
Physical Review X 11 (2), 21022 (2021).
Understanding the interplay between charge and spin and its effects on transport is a ubiquitous challenge in quantum many-body systems. In the Fermi-Hubbard model, this interplay is thought to give rise to magnetic polarons, whose dynamics may explain emergent properties of quantum materials such as high-temperature superconductivity. In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons. Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background, indicating polaron formation. At long times, we find that dynamics are slowed down by the spin exchange time, and they are compatible with a polaronic model with strong density and spin coupling. Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets
A. Bohrdt, Y. Wang, J. Koepsell, M. Kanasz-Nagy, E. Demler, F. Grusdt
Physical Review Letters 126 (2), 26401 (2021).
Traditionally, one- and two-point correlation functions are used to characterize many-body systems. In strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may no longer be sufficient, because higher-order correlations are crucial to understanding the character of the many-body system and can be numerically dominant. Experimentally, such higher-order correlations have recently become accessible in ultracold atom systems. Here, we reveal strong non-Gaussian correlations in doped quantum antiferromagnets and show that higher-order correlations dominate over lower-order terms. We study a single mobile hole in the t - J model using the density matrix renormalization group and reveal genuine fifth-order correlations which are directly related to the mobility of the dopant. We contrast our results to predictions using models based on doped quantum spin liquids which feature significantly reduced higher-order correlations. Our predictions can be tested at the lowest currently accessible temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally, we propose to experimentally study the same fifth-order spin-charge correlations as a function of doping. This will help to reveal the microscopic nature of charge carriers in the most debated regime of the Hubbard model, relevant for understanding high-T-c superconductivity.
Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet
A. Bohrdt, F. Grusdt, M. Knap
New Journal of Physics 22 (12), 123023 (2020).
Tremendous recent progress in the quantum simulation of the Hubbard model paves the way to controllably study doped antiferromagnetic Mott insulators. Motivated by these experimental advancements, we numerically study the real-time dynamics of a single hole created in an antiferromagnet on a square lattice, as described by the t-J model. Initially, the hole spreads ballistically with a velocity proportional to the hopping matrix element. At intermediate to long times, the dimensionality as well as the spin background determine the hole dynamics. A hole created in the ground state of a two dimensional (2D) quantum antiferromagnet propagates again ballistically at long times but with a velocity proportional to the spin exchange coupling, showing the formation of a magnetic polaron. We provide an intuitive explanation of this dynamics in terms of a parton construction, which leads to a good quantitative agreement with the numerical tensor network state simulations. In the limit of infinite temperature and no spin exchange couplings, the dynamics can be approximated by a quantum random walk on a Bethe lattice with coordination number z x303,. 4 Adding Ising interactions corresponds to an effective disordered potential, which can dramatically slow down the hole propagation, consistent with subdiffusive dynamics. The study of the hole dynamics paves the way for understanding the microscopic constituents of this strongly correlated quantum state.
Parton theory of angle-resolved photoemission spectroscopy spectra in antiferromagnetic Mott insulators
A. Bohrdt, E. Demler, F. Pollmann, M. Knap, F. Grusdt
Physical Review B 102 (3), 35139 (2020).
Angle-resolved photoemission spectroscopy (ARPES) has revealed peculiar properties of mobile dopants in correlated antiferromagnets (AFMs). But, describing them theoretically, even in simplified toy models, remains a challenge. Here, we study ARPES spectra of a single mobile hole in the t-J model. Recent progress in the microscopic description of mobile dopants allows us to use a geometric decoupling of spin and charge fluctuations at strong couplings, from which we conjecture a one-to-one relation of the one-dopant spectral function and the spectrum of a constituting spinon in the undoped parent AFM. We thoroughly test this hypothesis for a single hole doped into a two-dimensional Heisenberg AFM by comparing our semianalytical predictions to previous quantum Monte Carlo results and our large-scale time-dependent matrix product state calculations of the spectral function. Our conclusion is supported by a microscopic trial wave function describing spinon-chargon bound states, which captures the momentum and t/J dependence of the quasiparticle residue. From our conjecture we speculate that ARPES measurements in the pseudogap phase of cuprates may directly reveal the Dirac-fermion nature of the constituting spinons. Specifically, we demonstrate that our trial wave function provides a microscopic explanation for the sudden drop of spectral weight around the nodal point associated with the formation of Fermi arcs, assuming that additional frustration suppresses long-range AFM ordering. We benchmark our results by studying the crossover from two to one dimension, where spinons and chargons are confined and deconfined, respectively.
Multiparticle Interactions for Ultracold Atoms in Optical Tweezers: Cyclic Ring-Exchange Terms
A. Bohrdt, A. Omran, E. Demler, S. Gazit, F. Grusdt
Physical Review Letters 124 (7), 73601 (2020).
Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose a protocol showing how SU(N)-invariant multibody interactions can he implemented in optical tweezer arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using density-matrix renormalization group simulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can he utilized to implement the strongly frustrated J-Q model, a candidate for hosting a deconfined quantum critical point.
Evaluation of time-dependent correlators after a local quench in iPEPS: hole motion in the t - J model
C. Hubig, A. Bohrdt, M. Knap, F. Grusdt, J. I. Cirac
Scipost Physics 8 (2), 21 (2020).
Infinite projected entangled pair states (iPEPS) provide a convenient variational description of infinite, translationally-invariant two-dimensional quantum states. However, the simulation of local excitations is not directly possible due to the translationally-invariant ansatz. Furthermore, as iPEPS are either identical or orthogonal, expectation values between different states as required during the evaluation of non-equal-time correlators are ill-defined. Here, we show that by introducing auxiliary states on each site, it becomes possible to simulate both local excitations and evaluate non-equal-time correlators in an iPEPS setting under real-time evolution. We showcase the method by simulating the t - J model after a single hole has been placed in the half-filled antiferromagnetic background and evaluating both return probabilities and spin correlation functions, as accessible in quantum gas microscopes.
Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains
J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, C. Gross
Science 367 (6474), 186-+ (2020).
Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.
Classifying snapshots of the doped Hubbard model with machine learning
A. Bohrdt, C. S. Chiu, G. Jig, M. Q. Xu, D. Greif, M. Greiner, E. Demler, F. Grusdt, M. Knap
Nature Physics 15 (9), 921-924 (2019).
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi-Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type(1,2), and the geometric string theory(3,4), describing a state with hidden spin order. This technique considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory that is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.
String patterns in the doped Hubbard model
C. S. Chiu, G. Ji, A. Bohrdt, M. Q. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, D. Greif
Science 365 (6450), 251-+ (2019).
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work, we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet, we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.
Microscopic spinon-chargon theory of magnetic polarons in the t-J model
F. Grusdt, A. Bohrdt, E. Demler
Physical Review B 99 (22), 224422 (2019).
The interplay of spin and charge degrees of freedom, introduced by doping mobile holes into a Mott insulator with strong antiferromagnetic (AFM) correlations, is at the heart of strongly correlated matter such as high-T-C cuprate superconductors. Here, we capture this interplay in the strong coupling regime and propose a trial wave function of mobile holes in an AFM. Our method provides a microscopic justification for a class of theories which describe doped holes moving in an AFM environment as mesonlike bound states of spinons and chargons. We discuss a model of such bound states from the perspective of geometric strings, which describe a fluctuating lattice geometry introduced by the fast motion of the chargon, relative to the spinon. This is demonstrated to give rise to short-range hidden string order, signatures of which have recently been revealed by ultracold atom experiments at elevated temperatures. We present evidence for such short-range hidden string correlations also at zero temperature by performing numerical density-matrix renormalization-group simulations. To test our microscopic approach, we calculate the ground-state energy and dispersion relation of a hole in an AFM, as well as the magnetic polaron radius, and obtain good quantitative agreement with advanced numerical simulations at strong coupling. We discuss extensions of our analysis to systems without long-range AFM order to systems with short-range magnetic correlations.